829 resultados para SOLID SUPERACID CATALYST
Resumo:
The solid-phase synthesis of a cyclic peptide containing the 21-residue epitope found in the A-B loop of the Cepsilon3 domain of human immunoglobulin E has been carried out. The key macrocyclization step to form the 65-membered ring is achieved in similar to15% yield via an "on-resin" Sonogashira coupling reaction which concomitantly installs a diphenylacetylene amino acid conformational constraint within the loop.
Resumo:
The phase diagram of cyclopentane has been studied by powder neutron diffraction, providing diffraction patterns for phases I, II, and III, over a range of temperatures and pressures. The putative phase IV was not observed. The structure of the ordered phase III has been solved by single-crystal diffraction. Computational modeling reveals that there are many equienergetic ordered structures for cyclopentane within a small energy range. Molecular dynamics simulations reproduce the structures and diffraction patterns for phases I and III and also show an intermediate disordered phase, which is used to interpret phase II.
Resumo:
A synthetic method for chemically tethering organic based surfactant molecules and fluorous surfactant molecules onto a high surface and pore volume silica has been developed. It is shown that heterogenisation of a simple water-soluble ions (i.e. molybdate ion and Co2+) can be accomplished onto these composite materials. They display an excellent activity and selectivity for oxidation of organic molecules in bulk organic solvent or in supercritical CO2. Characterisations indicate that catalysis occurs within the surface supported surfactant assemblies (chemically tethered reversed micelles) in the porous silica structure. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Stabilized water droplet dispersed in supercritical carbon dioxide fluid is demonstrated to be an excellent alternative solvent system to acetic acid for air oxidation of a number of alkyl aromatic hydrocarbons using Co(II) species at mild conditions.
Resumo:
New "Pt-in-CeO2" catalyst prepared by microemulsion method is shown to give higher activity for a water-gas shift reaction but with no formation of CH4, the side product from hydrogenation of carbon oxides using a hydrogen-rich reformate as compared to conventional "Pt-on-CeO2" catalysts. Detailed characterization by DRIFT analysis and temperature programmed reduction presented in this work clearly suggest the ceria coverage on Pt inhibits the metal from forming a strong CO adsorption.
Resumo:
We have developed a new method for the synthesis of Pd nanoparticles with controllable sizes within a silica matrix using solid-supported surfactants in supercritical CO2. XRD, HRTEM and CO chemisorption data show that unformly sized Pd nanoparticles are evenly distributed within the porous silica and are chemically tethered by surfactant molecules [poly(oxyethylene stearyl ether) and fluorinated poly(oxyethylene)]. It is postulated that tiny solid-supported surfactant assemblies act as nano-reactors for the template synthesis of nanoparticles or clusters from the soluble precursors therein.
Resumo:
Templated sol-gel encapsulation of surfactant-stabilised micelles containing metal precursor(s) with ultra-thin porous silica coating allows solvent extraction of organic based stabiliser from the composites in colloidal state hence a new method of preparing supported alloy catalysts using the inorganic silica-stabilised nano-sized, homogenously mixed, silver - platinum (Ag-Pt) colloidal particles is reported.
Resumo:
One of the key hindrances on development of solid catalysts containing cobalt species for partial oxidation of organic molecules at mild conditions in conventional liquid phase is the severe metal leaching. The leached soluble Co species with a higher degree of freedom always out-performs those of solid supported Co species in oxidation catalysis. However, the homogeneous Co species concomitantly introduces separation problems. We have recently reponed for the first time, a new oxidation catalyst system for the oxidation of organic molecules in supercritical CO2 using the principle of micellar catalysis. [CF3(CF2)(8)COO](2)Co.xH(2)O (the fluorinated anionic moiety forms aqueous reverse micelles carrying water-soluble Co2+ cations in scCO(2)) was previously shown to be extremely active for the oxidation of toluene in the presence of sodium bromide in water-CO2 mixture, giving 98% conversion and 99% selectivity to benzoic acid at 120 degreesC. In this study, we show that the effects of varying the type of surfactant counterions and the length of the surfactant chains on catalysis. It is found that the use of [CF3(CF2)(8)COO](2)Mg.yH(2)O/Co(II) acetate is as effective as the [CF3(CF2)(8)COO](2)Co.xH(2)O and the fluorinated chain length used has a subtle effect on the catalytic rate measured. It is also demonstrated that this new type of micellar catalyst in scCO(2) can be easily separated via CO2 depressurisation and be reused without noticeable deactivation. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
A novel series of linear, high molecular weight polymers were synthesized by one-pot, superacid-catalyzed reaction of acenaphthenequinone (1) with aromatic hydrocarbons. The reactions were performed at room temperature in the Bronsted superacid CF3SO3H (trifluoromethanesulfonic acid, TFSA) and in a mixture of TFSA with methanesulfonic acid (MSA) and trifluoroacetic acid (TFA), which was used as both solvent and a medium for generation of electrophilic species from acenaphthenequinone. The polymer-forming reaction was found to be dependent greatly on the acidity of the reaction medium, as judged from the viscosity of the polymers obtained. Polycondensations of acenaphthenequinone with 4,4'-diphenoxybenzophenone (f), 1,3-bis(4-phenoxybenzoyl)benzene (g), 1,4-bis(4-phenoxybenzoyl)benzene (h), 1,10-bis(4-phenoxyphenyl)decane-1,10-dione (i), 2,6-diphenoxybenzonitrile), 2,6-diphenoxybenzoic acid (k), and 2-(4-biphenylyl)-6-phenylbenzoxazole (1) proceeded in a reaction medium of wide range of acidity, including pure TFSA (Hammett acidity function H-0 of pure TFSA is -14.1), whereas condensation of 1 with biphenyl, terphenyl, diphenyl ether, and 1,4-diphenoxybenzene needed a reaction medium of acidity H-0 less than -11.5. A possible reaction mechanism is suggested. The polymers obtained were found to be soluble in the common organic solvents, and flexible transparent films could be cast from the solutions. H-1 and C-13 NMR analyses of the polymers synthesized revealed their linear, highly regular structure. The polymers also possess high thermostability. Char yields for polymers 3a, 3c, 3d, and 3l in nitrogen were close to 80% at 1000 degrees C.
Resumo:
A water gas shift catalyst comprising metal particles and a metal oxide material is disclosed. The metal particles comprise at least one precious metal and the metal oxide material comprises at least one reducible metal oxide. Substantially all of the metal particles are encapsulated by the metal oxide material such that the catalyst has substantially no activity for methanation. The loading of the metal particles is between 0.5-25wt% based on the weight of the metal oxide material. A process for preparing the catalyst is also disclosed.
Resumo:
Truly continuous solid-state fermentations with operating times of 2-3 weeks were conducted in a prototype bioreactor for the production of fungal (Penicillium glabrum) tannase from a tannin-containing model substrate. Substantial quantities of the enzyme were synthesized throughout the operating periods and (imperfect) steady-state conditions seemed to be achieved soon after start-up of the fermentations. This demonstrated for the first time the possibility of conducting solid-state fermentations in the continuous mode and with a constant noninoculated feed. The operating variables and fermentation conditions in the bioreactor were sufficiently well predicted for the basic reinoculation concept to succeed. However, an incomplete understanding of the microbial mechanisms, the experimental system, and their interaction indicated the need for more research in this novel area of solid-state fermentation. (C) 2004 Wiley Periodicals, Inc.
Resumo:
A combined mathematical model for predicting heat penetration and microbial inactivation in a solid body heated by conduction was tested experimentally by inoculating agar cylinders with Salmonella typhimurium or Enterococcus faecium and heating in a water bath. Regions of growth where bacteria had survived after heating were measured by image analysis and compared with model predictions. Visualisation of the regions of growth was improved by incorporating chromogenic metabolic indicators into the agar. Preliminary tests established that the model performed satisfactorily with both test organisms and with cylinders of different diameter. The model was then used in simulation studies in which the parameters D, z, inoculum size, cylinder diameter and heating temperature were systematically varied. These simulations showed that the biological variables D, z and inoculum size had a relatively small effect on the time needed to eliminate bacteria at the cylinder axis in comparison with the physical variables heating temperature and cylinder diameter, which had a much greater relative effect. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
A mathematical growth model for the batch solid-state fermentation process for fungal tannase production was developed and tested experimentally. The unstructured model describes the uptake and growth kinetics of Penicillium glabrum in an impregnated polyurethane foam substrate system. In general, good agreement between the experimental data and model simulations was obtained. Biomass, tannase and spore production are described by logistic kinetics with a time delay between biomass production and tannase and spore formation. Possible induction mechanisms for the latter are proposed. Hydrolysis of tannic acid, the main carbon source in the substrate system, is reasonably well described with Michaelis-Menten kinetics with time-varying enzyme concentration but a more complex reaction mechanism is suspected. The metabolism of gallic acid, a tannase-hydrolysis product of tannic acid, was shown to be growth limiting during the main growth phase. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Headspace solid phase microextraction (HS-SPME) has been used to isolate the headspace volatiles formed during oxidation of oil-in-water emulsions. Qualitative and quantitative analyses with an internal standard were performed by GC-FID. Four sample temperatures for adsorption (30, 40, 50 and 60 C) and adsorption times in the range 10-25 min were tested to determine the conditions for the volatile concentration to reach equilibrium. The optimum conditions were at 50 C for 20 min. The method was applied to monitor changes in volatile composition during oxidation of an o/w emulsion. SPME was a simple, reproducible and sensitive method for the analysis of volatile oxidation products in oil-in-water emulsions. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The phase separation behaviour in aqueous mixtures of poly(methyl vinyl ether) and hydroxypropylcellulose has been studied by cloud points method and viscometric measurements. The miscibility of these blends in solid state has been assessed by infrared spectroscopy; methanol vapours sorption experiments and scanning electron microscopy. The values of Gibbs energy of mixing of the polymers and their blends with methanol as well as between each other were calculated. It was found that in solid state the polymers can interact with methanol very well but the polymer-polymer interactions are unfavourable. Although in aqueous solutions the polymers exhibit some intermolecular interactions their solid blends are not completely miscible. (C) 2005 Elsevier Ltd. All rights reserved.