910 resultados para SNIF-NMR
Resumo:
Amphibian skin secretions are considered a rich source of biologically active compounds and are known to be rich in peptides, bufadienolides and alkaloids. Bufadienolides are cardioactive steroids from animals and plants that have also been reported to possess antimicrobial activities. Leishmaniasis and American Trypanosomiasis are parasitic diseases found in tropical and subtropical regions. The efforts toward the discovery of new treatments for these diseases have been largely neglected, despite the fact that the only available treatments are highly toxic drugs. In this work, we have isolated, through bioguided assays, the major antileishmanial compounds of the toad Rhinella jimi parotoid macrogland secretion. Mass spectrometry and (1)H and (13)C NMR spectroscopic analyses were able to demonstrate that the active molecules are telocinobufagin and hellebrigenin. Both steroids demonstrated activity against Leishmania (L.) chagasi promastigotes, but only hellebrigenin was active against Trypanosoma cruzi trypomastigotes. These steroids were active against the intracellular amastigotes of Leishmania, with no activation of nitric oxide production by macrophages. Neither cytotoxicity against mouse macrophages nor hemolytic activities were observed. The ultrastructural studies with promastigotes revealed the induction of mitochondrial damage and plasma membrane disturbances by telocinobufagin, resulting in cellular death. This novel biological effect of R. jimi steroids could be used as a template for the design of new therapeutics against Leishmaniasis and American Trypanosomiasis. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A new gold(I) complex with 2-mercaptothiazoline (MTZ) with the coordination formula [AuCN(C(3)H(5)NS(2))] was synthesized and characterized by chemical and spectroscopic measurements, OFT studies and biological assays. Infrared (IR) and (1)H, (13)C and (15)N nuclear magnetic resonance (NMR) spectroscopic measurements indicate coordination of the ligand to gold(I) through the nitrogen atom. Studies based on OFT confirmed nitrogen coordination to gold(I) as a minimum of the potential energy surface with calculations of the hessians showing no imaginary frequencies. Thermal decomposition starts at temperatures near 160 degrees C, leading to the formation of Au as the final residue at 1000 degrees C. The gold(I) complex with 2-mercaptothiazoline (Au-MTZ) is soluble in dimethyl sulfoxide (DMSO), and is insoluble in water, methanol, ethanol, acetonitrile and hexane. The antibacterial activities of the Au-MTZ complex were evaluated by an antibiogram assay using the disc diffusion method. The compound showed an effective antibacterial activity against Staphylococcus aureus (Gram-positive) and Escherichia coli and Pseudomonas aeruginosa (Gram-negative) bacterial cells. Biological analysis for evaluation of the cytotoxic effect of the Au-MTZ complex was performed using HeLa cells derived from human cervical adenocarcinoma. The complex presented a potent cytotoxic activity, inducing 85% of cell death at a concentration of 2.0 mu mol L(-1). (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The Schistosoma mansoni fatty acid binding protein (FABP), SmA, is a vaccine candidate against, S. mansoni and F hepatica. Previously, we demonstrated the importance of a correct fold to achieve protection in immunized animals after cercariae challenge [[10]. C.R.R. Ramos, R.C.R. Figueredo, T.A. Pertinhez, M.M. Vilar, A.L.T.O. Nascimento, M. Tendler, I. Raw, A. Spisni, P.L. Ho, Gene structure and M20T polymorphism of the Schistosoma mansoni Sm14 fatty acid-binding protein: structural, functional and immunoprotection analysis. J. Biol. Chem. 278 (2003) 12745-12751]. Here we show that the reduction of vaccine efficacy over time is due to protein dimerization and subsequent aggregation. We produced the mutants Sm14-M20(C62S) and Sm14M20(C62V) that, as expected, did not dimerize in SDS-PAGE. Molecular dynamics calculations and unfolding experiments highlighted a higher structural stability of these mutants with respect to the wild-type. In addition, we found that the mutated proteins, after thermal denaturation, refolded to their active native molecular architecture as proved by the recovery of the fatty acid binding ability. Sm14-M20(C62V) turned out to be the more stable form over time, providing the basis to determine the first 3D solution structure of a Sm14 protein in its apo-form. Overall, Sm14-M20(C62V) possesses an improved structural stability over time, an essential feature to preserve its immunization capability and, in experimentally immunized animals, it exhibits a protection effect against S. mansoni cercariae infections comparable to the one obtained with the wild-type protein. These facts indicate this protein as a good lead molecule for large-scale production and for developing an effective Sm14 based anti-helminthes vaccine. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This study is the first in the literature to focus attention on the possible immunotoxic effect of integerrimine N-oxide content in the butanolic residue (BR) of Senecio brasiliensis, a poisonous hepatotoxic plant that contains pyrrolizidine alkaloids (PAs). PAs have been reported as a pasture and food contaminant and as herbal medicine used worldwide and are responsible for poisoning events in livestock and human beings. After the plant extraction, BR extracted from Senecio brasiliensis was found to contain approximately 70% integerrimine N-oxide by elemental and spectral analyses ((1)H and (13)C NMR), which was administered to adult male Wistar Hannover rats at doses of 3, 6 and 9 mg/kg for 28 days. Body weight gain, food consumption, lymphoid organs, neutrophil analysis, humoural immune response, cellular immune response and lymphocyte analysis were evaluated. Our study showed that integerrimine N-oxide could promote an impairment in the body weight gain, interference with blood cell counts and a reducing T cell proliferative activity in rats; however, no differences in the neutrophil activities, lymphocytes phenotyping and humoural and cellular immune responses were observed. It is concluded that doses of integerrimine N-oxide here employed did not produce marked immunotoxic effects. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The resin phase of dental composites is mainly composed of combinations of dimethacrylate comonomers, with final polymeric network structure defined by monomer type/reactivity and degree of conversion. This fundamental study evaluates how increasing concentrations of the flexible triethylene glycol dimethacrylate (TEGDMA) influences void formation in bisphenol A diglycidyl dimethacrylate (BisGMA) co-polymerizations and correlates this aspect of network structure with reaction kinetic parameters and macroscopic volumetric shrinkage. Photopolymerization kinetics was followed in real-time by a near-infrared (NIR) spectroscopic technique, viscosity was assessed with a viscometer, volumetric shrinkage was followed with a linometer, free volume formation was determined by positron annihilation lifetime spectroscopy (PALS) and the sol-gel composition was determined by extraction with dichloromethane followed by (1)H NMR analysis. Results show that, as expected, volumetric shrinkage increases with TEGDMA concentration and monomer conversion. Extraction/(1)H NMR studies show increasing participation of the more flexible TEGDMA towards the limiting stages of conversion/crosslinking development. As the conversion progresses, either based on longer irradiation times or greater TEGDMA concentrations, the network becomes more dense, which is evidenced by the decrease in free volume and weight loss after extraction in these situations. For the same composition (BisGMA/TEGDMA 60-40 mol%) light-cured for increasing periods of time (from 10 to 600 s), free volume decreased and volumetric shrinkage increased, in a linear relationship with conversion. However, the correlation between free volume and macroscopic volumetric shrinkage was shown to be rather complex for variable compositions exposed for the same time (600 s). The addition of TEGDMA decreases free-volume up to 40 mol% (due to increased conversion), but above that concentration, in spite of the increase in conversion/crosslinking, free volume pore size increases due to the high concentration of the more flexible monomer. In those cases, the increase in volumetric shrinkage was due to higher functional group concentration, in spite of the greater free volume. Therefore, through the application of the PALS model, this study elucidates the network formation in dimethacrylates commonly used in dental materials. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Aim: In the Amazon region of Brazil, the fruits of Caesalpinia ferrea Martius (Brazilian ironwood) are widely used as an antimicrobial and healing medicine in many situations including oral infections. This study aimed to evaluate the antimicrobial activity of Caesalpinia ferrea Martius fruit extract against oral pathogens. Materials and methods: Polyphenols estimation and spectral analysis ((1)H NMR) of the methanol extract were carried out. The microorganisms Candida albicans, Streptococcus mutans, Streptococcus salivarius, Streptococcus oralis and Lactobacillus casei were tested using the microdilution method for planktonic cells (MIC) and a multispecies biofilm model. Chlorhexidine was used as positive control. Results: Polyphenols in the extract were estimated at 7.3% and (1)H NMR analysis revealed hydroxy phenols and methoxilated compounds. MIC values for Candida albicans, Streptococcus mutans, Streptococcus salivarius, Streptococcus oralis and Lactobacillus casei were 25.0, 40.0, 66.0, 100.0, 66.0 mu g/mL, respectively. For the biofilm assay, chlorhexidine and plant extract showed no growth at 10(-4) and 10(-5) microbial dilution, respectively. At 10-4 and 10-5 the growth values (mean +/- SD) of the negative controls (DMSO and saline solution) for Streptococcus mutans, Streptococcus sp. and Candida albicans were 8.1 +/- 0.7, 7.0 +/- 0.6 and 5.9 +/- 0.9 x 10(6) CFU, respectively. Conclusion: Caesalpinia ferrea fruit extract can inhibit in vitro growth of oral pathogens in planktonic and biofilm models supporting its use for oral infections. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Objective. To evaluate the effect of two additives, aldehyde or diketone, on the wear, roughness and hardness of bis-GMA-based composites/copolymers containing TEGDMA, propoxylated bis-GMA (CH(3)bis-GMA) or propoxylated fluorinated bis-GMA (CF(3)bis-GMA). Methods. Fifteen experimental composites and 15 corresponding copolymers were prepared combining bis-GMA and TEGDMA, CH3bis-GMA or CF3bis-GMA, with aldehyde (24mol% and 32 mol%) or diketone (24 mol% and 32 mol%) totaling 30 groups. For composites, hybrid treated filler (barium aluminosilicate glass/pyrogenic silica; 60 wt%) was added to monomer mixtures. Photopolymerization was affected by 0.2 wt% each of camphorquinone and N,N-dimethyl-p-toluidine. Wear (W) test was conducted in a toothbrushing abrasion machine (n = 6) and quantified using a profilometer. Surface roughness (R) changes, before and after abrasion test, were determined using a rugosimeter. Microhardness (H) measurements were performed for dry and wet samples using a Knoop microindenter (n = 6). Data were analyzed by one-way ANOVA and Tukey`s test (alpha = 0.05). Results. Incorporation of additives led to improved W and H values for bis-GMA/TEGDMA and bis-GMA/CH(3)bis-GMA systems. Additives had no significant effect on the W and H changes of bis-GMA/CF(3)bis-GMA. With regard to R changes, additives produced decreased values for bis-GMA/CH3bis-GMA and bis-GMA/CF3bis-GMA composites. Bis-GMA/TEGDMA and bis-GMA/CH(3)bis-GMA copolymers with additives became smoother after abrasion test. Significance. The findings correlate with additives ability to improve degree of conversion of some composites/copolymers thereby enhancing mechanical properties. Published by Elsevier Ltd on behalf of Academy of Dental Materials
Resumo:
Aim: In the present study, we assessed the role of 5-hydroxytryptamine (5-HT) receptors (5-HT1A, 5-HT2 and 5-HT7) in the nucleus raphe magnus (NRM) on the ventilatory and thermoregulatory responses to hypoxia. Methods: To this end, pulmonary ventilation (V-E) and body temperature (T-b) of male Wistar rats were measured in conscious rats, before and after a 0.1 mu L microinjection of WAY-100635 (5-HT1A receptor antagonist, 3 mu g 0.1 mu L-1, 56 mM), ketanserin (5-HT2 receptor antagonist, 2 mu g 0.1 mu L-1, 36 mM) and SB269970 (5-HT7 receptor antagonist, 4 mu g 0.1 mu L-1, 103 mM) into the NRM, followed by 60 min of severe hypoxia exposure (7% O-2). Results: Intra-NMR microinjection of vehicle (control rats) or 5-HT antagonists did not affect V-E or T-b during normoxic conditions. Exposure of rats to 7% O-2 evoked a typical hypoxia-induced anapyrexia after vehicle microinjections, which was not affected by microinjection of WAY-100635, SB269970 or ketanserin. The hypoxia-induced hyperpnoea was not affected by SB269970 and ketanserin intra-NMR. However, the treatment with WAY-100635 intra-NRM attenuated the hypoxia-induced hyperpnoea. Conclusion: These data suggest that 5-HT acting on 5-HT1A receptors in the NRM increases the hypoxic ventilatory response.
Resumo:
Three new amino alcohols presumably deriving from L-alanine were isolated from the tropical marine sponge Haliclona n. sp. and characterized by 2D NMR, while a fourth amino alcohol was characterized as an acetamide derivative. Relative stereochemistry was deduced from the NMR characteristics of oxazolidinone derivatives and absolute stereochemistry secured by preparation and analysis of an MPA ester. The amino alcohol fraction from Haliclona n. sp, acts as an antifungal agent and inhibits the development of larvae of the ascidian Herdmania curvata.
Resumo:
Five new chlorinated peptides (5)-(9) have been isolated from a Dysidea sp. and identified by two-dimensional NMR spectroscopy. The absolute stereochemistry of the metabolites was deduced by chemical correlation with S-(-)-4,4,4-trichloro-3-methylbutanoic acid (10) and with an alcohol (11). (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The kinetics and mechanisms of thermally initiated (using 2,2'-azobisisoburyronitrile (AIBN) as initiator) radical homopolymerizations of a series of maleimides, including N-phenymaleimide (PHMI) [l-phenyl-1H-pyrrole-2,5-dione]; N-n-hexylmaleimide (nHMI) [l-(n-hexyI)-1H-pyrrole-2,5-dione]; and N-cyclohexylmaIeimide (CHMI) [l-cyclohexyl- 1H-pyrrole-2,5-dione] have been investigated in THF solution by an on-line FT-NIR technique. It was found that the order of the activation energies for the three N-sub-MIs is: E-a PHMI < E-a (PHMI) < E-a (CHMI). The overall polymerization rate parameter k and the pre-exponential factor A were calculated. The kinetic order with respect to the N-sub-MIs was in the range of 0.71 < m < 0.75 for the initiator and n = 1.0 for the monomer. Radical transfer to solvent was found to be the key factor in determining the apparent order with respect to the initiator. All of the homopolymers had a relatively low molecular weight. The end groups of the polymer chains were characterized by MALDI-TOF, GPC and NMR methods and the results clearly indicate that the polymerization was initiated by THF radicals, and that the termination reaction is mainly controlled by chain transfer to solvent through an hydrogen abstraction mechanism. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The structure of the product from the free radical bulk copolymerization of methyl methacrylate (MMA) and allyl acetate (AAc) was investigated. The mole fraction of AAc plays an important role in the copolymerization of these two monomers. Molecular weight (MW) and molecular weight distribution (MWD) are completely altered when the feed composition is dominantly AAc. NMR spectroscopy confirmed the incorporation of AAc into the polymer. However, no allyl-allyl linkages were observed at low conversions. T-g was found to be affected by the incorporation of AAc into the polymer. (C) 2001 Society of Chemical Industry.
Resumo:
The molecular weight changes which occur on the gamma -radiolysis of poly(dimethyl siloxane) under vacuum between 77 and 373 K and in air at 303 K have been investigated using triple detection GPC to obtain the complete molecular weight distributions for the irradiated samples and to determine the number and weight average molecular weights. The results have been interpreted in terms of the relative yields of scission and crosslinking. The total yields for crosslinking predominate over those for scission at all the temperatures investigated for radiolysis under vacuum. Based on a solid-state Si-29 NMR analysis of PDMS irradiated under vacuum at 303 K, which yielded a value of G(Y) of 1.70, the values of G(S) = 1.15 +/-0.2 and G(H) = 1.45 +/-0.2 were obtained for radiolysis under vacuum at 303 K. For radiolysis in air at 303 K, crosslinking was also predominant, but the nett yield of crosslinking was much less than that observed for radiolysis under vacuum. Under the conditions of the radiolysis in air at 303 K, because of the low solubility of oxygen in PDMS, it is likely that the radiation chemistry is limited by oxygen diffusion. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Malondialdehyde and acetaldehyde react together with proteins and form hybrid protein conjugates designated as MAA adducts, which have been detected in livers of ethanol-fed animals. Our previous studies have shown that MAA adducts are comprised of two distinct products. One adduct is composed of two molecules of malondialdehyde and one molecule of acetaldehyde and was identified as the 4-methpl-1,4-dihydropyridine-3,5-dicarbaldehyde derivative of an amino group (MHHDC adduct). The other adduct is a 1:1 adduct of malondialdehyde and acetaldehyde and was identified as the 2-formyl-3-(alkylamino)butanal derivative of an amino group (FAAB adduct). In this study, information on the mechanism of MAA adduct formation was obtained, focusing on whether the FAAB adduct serves as a precursor for the MDHDC adduct. Upon the basis of chemical analysis and NMR spectroscopy, two initial reaction steps appear to be a prerequisite for MDHDC formation. One step involves the reaction of one molecule of malondialdehyde and one of acetaldehyde with an amino group of a protein to form the FAAB product, while the other step involves the generation of a malondialdehyde-enamine. It appears that generation of the MDHDC adduct requires the FAAB moiety to be transferred to the nitrogen of the MDA-enamine. For efficient reaction of FAAB with the enamine to take place, additional experiments indicated that these two intermediates likely must be in positions on the protein of close proximity to each other. Further studies showed that the incubation of liver proteins from ethanol-fed rats with MDA resulted in a marked generation of MDHDC adducts, indicating the presence of a pool of FAAB adducts in the liver of ethanol-fed animals. Overall, these findings show that MDHDC-protein adduct formation occurs via the reaction of the FAAB moiety with a malondialdehyde-enamine, and further suggest that a similar mechanism may be operative in vivo in the liver during prolonged ethanol consumption.
Resumo:
The three Australian-endemic species comprising the genus Aresehougia have been examined to determine the structure of their nonfibrillar wall components. The polysaccharide extracted from the most widely distributed species, A. congesta (Turner) J. Agardh, was shown by compositional analyses, Fourier transform infrared (FTIR) spectroscopy, linkage analysis, and C-13-NMR spectroscopy to be a carrageenan composed predominantly of the repeating disaccharides 6'-O-methylcarrabiose 2,4'-disulfate, carrabiose 2,4-disulfate (the repeating unit of L-carrageenan), 4',6'-O-(1-carboxyethylidene)carrabiose 2-sulfate, and 6'-O-methylcarrabiose 2-sulfate. The carrageenan also contained small amounts of 4-linked Galp residues, some bearing methyl ether substitution at O-3 and some possibly bearing sulfate ester and/or glycosyl substitutions at O-3. The A. congesta carrageenan had unique rheological properties, its gels having some similarities to those of commercial iota -carrageenan but with the viscosity of commercial lambda -carrageenan. Polysaccharides from A. ligulata Harvey ex J. Agardh and A. stuartii Harvey were shown by constituent sugar and FTIR analyses to be sulfated galactans rich in mono-O-methylgalactose. The carrageenan structures of Areschougia spp. were consistent with those of the genera Rhabdonia, Erythroclonium, and Austroclonium, the other genera constituting the family Areschougiaceae.