809 resultados para SINGLE-MODE LASER
Resumo:
A novel dual-slab laser with off-axis one-sided hybrid resonator is presented. The mode properties of the hybrid resonator are calculated using a fast Fourier transform method (FFT). The influence of wavefront distoration on the output beam quality is considered. Results indicate that the novel dual-slab laser is better than the normal dual-slab laser with off-axis one-sided hybrid resonator.
Resumo:
A diode pumped injection seeded single-longitudinal-mode (SLM) Nd:YAG laser is achieved by using the resonance-detection technique in Q-switching operation. The pulsed oscillator laser uses a folded cavity to achieve compact construction. This system operates at 100 Hz and provides over 20 mJ/pulse of single-frequency 1064 nm output. The M-2 values of horizontal and vertical axes are 1.58 and 1.41, respectively. The probability of putting out single-longitudinal-mode pulses is 100%. The 355 nm laser output produced by frequency tripling has a linewidth less than 200 MHz. The laser can run over eight hours continually without mode hopping.
Resumo:
Low-threshold and highly efficient continuous-wave laser performance of Yb:Y3Al5O12 (Yb:YAG) single crystal grown by a temperature gradient technique (TGT) was achieved at room temperature. The laser can be operated at 1030 and 1049 nm by varying the transmission of the output coupler. Slope efficiencies of 57% and 68% at 1049 and 1030 nm, respectively, were achieved for 10 at. % Yb:YAG sample in continuous-wave laser-diode pumping. The effect of pump power on the laser emission spectrum of both wavelengths is addressed. The near-diffraction-limited beam quality for different laser cavities was achieved. The excellent laser performance indicates that TGT-grown Yb:YAG crystals have very good optical quality and can be potentially used in high-power solid-state lasers.
Resumo:
High-quality Nd:LuVO4 single crystal was successfully grown by Czochralski method. The assessment of the crystalline quality by the chemical etching method and Conoscope image was reported. The absorption spectra from 300 to 1000 nm and emission spectra from 960 to 1450 nm of Nd: LuVO4 were measured. Laser performance was achieved with Nd:LUVO4 crystal for the transition of F-4(3/2) -> I-4(11/2) (corresponding wavelength 1065.8 nm) in an actively Q-switched operation, and the average output power reached 5.42 W at a pulse repetition frequency (PRF) of 40 kHz under pump power of 18 W, giving an optical conversion efficiency of 30.1%. The pulse energy and peak power reached 138 mu J and 16.2 kW at PRF of 25 kHz under pump power of 14.2 W, and the pulse duration was 8.5 ns. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We found that Ce3+:Lu2Si2O7 single crystals could be excited at 800 nm by using a femtosecond Ti:sapphire laser. The emission spectra of Ce3+:Lu2Si2O7 crystals were the same for one-photon excitation at 267 nm as for excitation at 800 nm. The emission intensity of Ce3+: Lu2Si2O7 crystals was found to depend on the cube of the laser power at 800 nm, consistent with simultaneous absorption of three 800 nm photons. The measured value of the three-photon absorption cross section is sigma'(3) = 2.44 x 10(-77) cm(6) s(2). (c) 2006 Optical Society of America.
Resumo:
Single-frequency output power of 7.3 W at 2.09 mu m from a monolithic Ho:YAG nonplanar ring oscillator (NPRO) is demonstrated. Resonantly pumped by a Tm-doped fiber laser at 1.91 mu m, the Ho:YAG NPRO produces 71% of slope efficiency with respect to absorbed pump power and nearly diffraction-limited output with a beam quality parameter of M-2 approximate to 1.1. (c) 2008 Optical Society of America