892 resultados para SIFT,Computer Vision,Python,Object Recognition,Feature Detection,Descriptor Computation
Resumo:
La visualització científica estudia i defineix algorismes i estructures de dades que permeten fer comprensibles conjunts de dades a través d’imatges. En el cas de les aplicacions mèdiques les dades que cal interpretar provenen de diferents dispositius de captació i es representen en un model de vòxels. La utilitat d’aquest model de vòxels depèn de poder-lo veure des del punt de vista ideal, és a dir el que aporti més informació. D’altra banda, existeix la tècnica dels Miralls Màgics que permet veure el model de vòxels des de diferents punts de vista alhora i mostrant diferents valors de propietat a cada mirall. En aquest projecte implementarem un algorisme que permetrà determinar el punt de vista ideal per visualitzar un model de vòxels així com també els punts de vista ideals per als miralls per tal d’aconseguir el màxim d’informació possible del model de vòxels. Aquest algorisme es basa en la teoria de la informació per saber quina és la millor visualització. L’algorisme també permetrà determinar l’assignació de colors òptima per al model de vòxels
Resumo:
The first part of this work presents an accurate analysis of the most relevant 3D registration techniques, including initial pose estimation, pairwise registration and multiview registration strategies. A new classification has been proposed, based on both the applications and the approach of the methods that have been discussed. The main contribution of this thesis is the proposal of a new 3D multiview registration strategy. The proposed approach detects revisited regions obtaining cycles of views that are used to reduce the inaccuracies that may exist in the final model due to error propagation. The method takes advantage of both global and local information of the registration process, using graph theory techniques in order correlate multiple views and minimize the propagated error by registering the views in an optimal way. The proposed method has been tested using both synthetic and real data, in order to show and study its behavior and demonstrate its reliability.
Resumo:
L'objectiu d'aquesta tesi és l'estudi de les diferents tècniques per alinear vistes tridimensionals. Aquest estudi ens ha permès detectar els principals problemes de les tècniques existents, aprotant una solució novedosa i contribuint resolent algunes de les mancances detectades especialment en l'alineament de vistes a temps real. Per tal d'adquirir les esmentades vistes, s'ha dissenyat un sensor 3D manual que ens permet fer adquisicions tridimensionals amb total llibertat de moviments. Així mateix, s'han estudiat les tècniques de minimització global per tal de reduir els efectes de la propagació de l'error.
Resumo:
El treball desenvolupat en aquesta tesi aprofundeix i aporta solucions innovadores en el camp orientat a tractar el problema de la correspondència en imatges subaquàtiques. En aquests entorns, el que realment complica les tasques de processat és la falta de contorns ben definits per culpa d'imatges esborronades; un fet aquest que es deu fonamentalment a il·luminació deficient o a la manca d'uniformitat dels sistemes d'il·luminació artificials. Els objectius aconseguits en aquesta tesi es poden remarcar en dues grans direccions. Per millorar l'algorisme d'estimació de moviment es va proposar un nou mètode que introdueix paràmetres de textura per rebutjar falses correspondències entre parells d'imatges. Un seguit d'assaigs efectuats en imatges submarines reals han estat portats a terme per seleccionar les estratègies més adients. Amb la finalitat d'aconseguir resultats en temps real, es proposa una innovadora arquitectura VLSI per la implementació d'algunes parts de l'algorisme d'estimació de moviment amb alt cost computacional.
Resumo:
A driver controls a car by turning the steering wheel or by pressing on the accelerator or the brake. These actions are modelled by Gaussian processes, leading to a stochastic model for the motion of the car. The stochastic model is the basis of a new filter for tracking and predicting the motion of the car, using measurements obtained by fitting a rigid 3D model to a monocular sequence of video images. Experiments show that the filter easily outperforms traditional filters.
Resumo:
Name agreement is the extent to which different people agree on a name for a particular picture. Previous studies have found that it takes longer to name low name agreement pictures than high name agreement pictures. To examine the effect of name agreement in the online process of picture naming, we compared event-related potentials (ERPs) recorded whilst 19 healthy, native English speakers silently named pictures which had either high or low name agreement. A series of ERP components was examined: P1 approximately 120ms from picture onset, N1 around 170ms, P2 around 220ms, N2 around 290ms, and P3 around 400ms. Additionally, a late time window from 800 to 900ms was considered. Name agreement had an early effect, starting at P1 and possibly resulting from uncertainty of picture identity, and continuing into N2, possibly resulting from alternative names for pictures. These results support the idea that name agreement affects two consecutive processes: first, object recognition, and second, lexical selection and/or phonological encoding.
Resumo:
This research examined how retrospective self-assessments of performance are affected by major depression. To test the validity of the depressive realism versus the selective processing hypotheses, aggregate posttest performance estimates (PTPEs) were obtained from clinically depressed patients and an age-matched comparison group across 4 decision tasks (object recognition, general knowledge, social judgment, and line-length judgment). As expected on the basis of previous findings, both groups were underconfident in their PTPEs, consistently underestimating the percentage of questions they had answered correctly. Contrary to depressive realism, and in partial support of the selective processing account, this underconfidence effect was not reduced but modestly exacerbated in the depressed patients. Further, whereas the PTPEs of the comparison group exceeded that expected on the basis of chance alone those of the depressed individuals did not. The results provide no support for the depressive realism account and suggest that negative biases contribute to metacognitive information processing in major depression.
Resumo:
In this paper results are shown to indicate the efficacy of a direct connection between the human nervous system and a computer network. Experimental results obtained thus far from a study lasting for over 3 months are presented, with particular emphasis placed on the direct interaction between the human nervous system and a piece of wearable technology. An overview of the present state of neural implants is given, as well as a range of application areas considered thus far. A view is also taken as to what may be possible with implant technology as a general purpose human-computer interface for the future.
Resumo:
Calibrated cameras are an extremely useful resource for computer vision scenarios. Typically, cameras are calibrated through calibration targets, measurements of the observed scene, or self-calibrated through features matched between cameras with overlapping fields of view. This paper considers an approach to camera calibration based on observations of a pedestrian and compares the resulting calibration to a commonly used approach requiring that measurements be made of the scene.