957 resultados para Rotary engines.
Ecological impacts from syngas burning in internal combustion engine: Technical and economic aspects
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This work discusses on the preparation of Ni-45Ti-5Mo, Ni-40Ti-10Mo and Ni-46Ti-2Mo-2Zr (at-%) alloys by high-energy ball milling and hot pressing, which are potentially attractive for dental and medical applications. The milling process was performed in stainless steel balls (19mm diameter) and vials (225 mL) using a rotary speed of 300rpm and a ball-to-powder weight ratio of 10:1. Hot pressing under vacuum was performed in a BN-coated graphite crucible at 900 degrees C for 1 h using a load of 20 MPa. The milled and hot-pressed materials were characterized by X-ray diffraction, electron scanning microscopy, and electron dispersive spectrometry. Peaks of B2-NiTi and Ni4Ti3 were identified in XRD patterns of Ni-45Ti-5Mo, Ni-40Ti-10Mo and Ni-46Ti-2Mo-2Zr powders milled for 1h. The NiTi compound dissolved small Mo amounts lower than 4 at%, which were measured by EDS analysis. Moreover, it was identified the existence of an unknown Mo-rich phase in microstructures of the hot-pressed Ni-Ti-Mo alloys.
Resumo:
This paper reports on the phase transformation during the preparation of Ni-25Nb, Ni-25Ta, Ni-20Nb-5Ta and Ni-15Nb-10Ta (at-%) powders by high-energy ball milling from elemental powders. The milling process was performed in a planetary ball milling using stainless steel balls and vials, rotary speed of 300rpm, and a ball-to-powder of 10:1. To minimize contamination and spontaneous ignition the powders were handled under argon atmosphere in a glove box. The milled powders were characterized by means of X-ray diffraction techniques. Results indicated that the Ni atoms were preferentially dissolved into the Nb (and/or Ta) lattice at the initial milling times, which contributed to change the relative intensity on the diffraction peaks. After the dissolution of Nb (and/or Ta) into the Ni lattice, the Ni peaks were moved to the direction of lower diffraction angles in Ni-25Nb, Ni-25Ta, Ni-20Nb-5Ta, Ni-15Nb-10Ta powders, indicating that the mechanical alloying was achieved.
Resumo:
The present work reports on the preparation of Al2O3-TiO2 ceramics by high-energy ball milling and sintering, varying the molar fraction in 1:1 and 3:1. The powder mixtures were processed in a planetary Fritsch P-5 ball mill using silicon nitride balls (10 mm diameter) and vials (225 mL), rotary speed of 250 rpm and a ball-to-powder weight ratio of 5:1. Samples were collected into the vial after different milling times. The milled powders were uniaxially compacted and sintered at 1300 and 1500 degrees C for 4h. The milled and sintered materials were characterized by X-ray diffraction and electron scanning microscopy (SEM). Results indicated that the intensity of Al2O3 and TiO2 peaks were reduced for longer milling times, suggesting that nanosized particles can be achieved. The densification of Al2O3-TiO2 ceramics was higher than 98% over the relative density in samples sintered at 1500 degrees C for 4h, which presented the formation of Al2TiO5.
Resumo:
Considering the constant technological developments in the aeronautical, space, automotive, shipbuilding, nuclear and petrochemical fields, among others, the use of materials with high strength mechanical capabilities at high temperatures has been increasingly used. Among the materials that meet the mechanical strength and corrosion properties at temperatures around 815 degrees C one can find the nickel base alloy Pyromet 31V (SAE HEV8). This alloy is commonly applied in the manufacturing of high power diesel engines exhaust valves where it is required high resistance to sulphide, corrosion and good resistance to creep. However, due to its high mechanical strength and low thermal conductivity its machinability is made difficult, creating major challenges in the analysis of the best combinations among machining parameters and cutting tools to be used. Its low thermal conductivity results in a concentration of heat at high temperatures in the interfaces of workpiece-tool and tool-chip, consequently accelerating the tools wearing and increasing production costs. This work aimed to study the machinability, using the carbide coated and uncoated tools, of the hot-rolled Pyromet 31V alloy with hardness between 41.5 and 42.5 HRC. The nickel base alloy used consists essentially of the following components: 56.5% Ni, 22.5% Cr, 2,2% Ti, 0,04% C, 1,2% Al, 0.85% Nb and the rest of iron. Through the turning of this alloy we able to analyze the working mechanisms of wear on tools and evaluate the roughness provided on the cutting parameters used. The tests were performed on a CNC lathe machine using the coated carbide tool TNMG 160408-23 Class 1005 (ISO S15) and uncoated tools TNMG 160408-23 Class H13A (ISO S15). Cutting fluid was used so abundantly and cutting speeds were fixed in 75 and 90 m/min. to feed rates that ranged from 0.12, 0.15, 0.18 and 0.21 mm/rev, and cutting depth of 0.8mm. The results of the comparison between uncoated tools and coated ones presented a machined length of just 30% to the first in relation to the performance of the second. The coated tools has obtained its best result for both 75 and 90 m/min. with feed rate of 0.15 mm/rev, unlike the uncoated tool which obtained its better results to 0.12 mm/rev.
Resumo:
Stainless steels are used to intake and exhaust valves production applied as internal combustion engines. In general valves are requested to support cyclic stresses applied due to opening and closing processes during the operation. The objective of this research is to study the influence on the axial fatigue strength of the resulting microstructure after heat treatment at the martensitic X45CrSi93 steel, combined with different surface treatments as hard chrome-plating, nitride and grinding. It was verified a significant increase on the fatigue strength of the martensitic steel after nitriding, compared with results from the chrome-plating specimens. A slight increase in the tensile strength was also noticed on nitrided parts as a consequence of a resistance increase due to nitrogen and carbon solid solution. (C) 2011 Published by Elsevier Ltd. Selection and peer-review under responsibility of ICM11
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose - The purpose of this paper is to provide information on lubricant contamination by biodiesel using vibration and neural network.Design/methodology/approach - The possible contamination of lubricants is verified by analyzing the vibration and neural network of a bench test under determinated conditions.Findings - Results have shown that classical signal analysis methods could not reveal any correlation between the signal and the presence of contamination, or contamination grade. on other hand, the use of probabilistic neural network (PNN) was very successful in the identification and classification of contamination and its grade.Research limitations/implications - This study was done for some specific kinds of biodiesel. Other types of biodiesel could be analyzed.Practical implications Contamination information is presented in the vibration signal, even if it is not evident by classical vibration analysis. In addition, the use of PNN gives a relatively simple and easy-to-use detection tool with good confidence. The training process is fast, and allows implementation of an adaptive training algorithm.Originality/value - This research could be extended to an internal combustion engine in order to verify a possible contamination by biodiesel.
Resumo:
Biodiesel is a fuel made up by mono-alkyl-esters of long chain fatty acids, derived from vegetable oils or animal fat. This fuel can be used in compression ignition engines for automotive propulsion or energy generation, as a partial or total substitute of fossil diesel fuel. Biodiesel can be processed from different mechanisms. Transesterification is the most common process for obtaining biodiesel, in which an ester compound reacts with an alcohol to form a new ester and a new alcohol. These reactions are normally catalyzed by the addition of an acid or a base. Initially sunflower, castor and soybean oil physicochemical properties are determined according to standard test methods, to evaluate if they had favorable conditions for use as raw material in the transesterification reaction. Sunflower, castor and soybean biodiesel were obtained by the methylic transesterification route in the presence of KOH and presented a yield above 93% m/m. The sunflower/castor and soybean/castor blends were studied with the aim of evaluating the thermal and oxidative stability of the biofuels. The biodiesel and blends were characterized by acid value, iodine value, density, flash point, sulfur content, and content of methanol and esters by gas chromatography (GC). Also studies of thermal and oxidative stability by Thermogravimetry (TG), Differential Scanning Calorimetry High Pressure (P-DSC) and dynamic method exothermic and Rancimat were carried out. Biodiesel sunflower and soybean are presented according to the specifications established by the Resolution ANP no 7/2008. Biodiesel from castor oil, as expected, showed a high density and kinematic viscosity. For the blends studied, the concentration of castor biodiesel to increased the density, kinematic viscosity and flash point. The addition of castor biodiesel as antioxidant in sunflower and soybean biodiesels is promising, for a significant improvement in resistance to autoxidation and therefore on its oxidative stability. The blends showed that compliance with the requirements of the ANP have been included in the range of 20-40%. This form may be used as a partial substitute of fossil diesel
Resumo:
Intensive use of machinery and engines burning fuel dumps into the atmosphere huge amounts of carbon dioxide (CO2), causing the intensification of the greenhouse effect. Climate changes that are occurring in the world are directly related to emissions of greenhouse gases, mainly CO2, gases, mainly due to the excessive use of fossil fuels. The search for new technologies to minimize the environmental impacts of this phenomenon has been investigated. Sequestration of CO2 is one of the alternatives that can help minimize greenhouse gas emissions. The CO2 can be captured by the post-combustion technology, by adsorption using adsorbents selective for this purpose. With this objective, were synthesized by hydrothermal method at 100 °C, the type mesoporous materials MCM - 41 and SBA-15. After the synthesis, the materials were submitted to a calcination step and subsequently functionalized with different amines (APTES, MEA, DEA and PEI) through reflux method. The samples functionalized with amines were tested for adsorption of CO2 in order to evaluate their adsorption capacities as well, were subjected to various analyzes of characterization in order to assess the efficiency of the method used for functionalization with amines. The physic-chemical techniques were used: X- ray diffraction (XRD), nitrogen adsorption and desorption (BET/BJH), scanning electron microscopy (SEM), transmission electron microscopy (TEM), CNH Analysis, Thermogravimetry (TG/DTG) and photoelectron spectroscopy X-ray (XPS). The CO2 adsorption experiments were carried out under the following conditions: 100 mg of adsorbent, at 25 °C under a flow of 100 ml/min of CO2, atmospheric pressure and the adsorption variation in time 10-210 min. The X-ray diffraction with the transmission electron micrographs for the samples synthesized and functionalized, MCM-41 and SBA-15 showed characteristic peaks of hexagonal mesoporous structure formation, showing the structure thereof was obtained. The method used was efficient reflux according to XPS and elemental analysis, which showed the presence of amines in the starting materials. The functionalized SBA -15 samples were those that had potential as best adsorbent for CO2 capture when compared with samples of MCM-41, obtaining the maximum adsorption capacity for SBA-15-P sample
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This dissertation presents a model-driven and integrated approach to variability management, customization and execution of software processes. Our approach is founded on the principles and techniques of software product lines and model-driven engineering. Model-driven engineering provides support to the specification of software processes and their transformation to workflow specifications. Software product lines techniques allows the automatic variability management of process elements and fragments. Additionally, in our approach, workflow technologies enable the process execution in workflow engines. In order to evaluate the approach feasibility, we have implemented it using existing model-driven engineering technologies. The software processes are specified using Eclipse Process Framework (EPF). The automatic variability management of software processes has been implemented as an extension of an existing product derivation tool. Finally, ATL and Acceleo transformation languages are adopted to transform EPF process to jPDL workflow language specifications in order to enable the deployment and execution of software processes in the JBoss BPM workflow engine. The approach is evaluated through the modeling and modularization of the project management discipline of the Open Unified Process (OpenUP)
Resumo:
The analysis of alcoholic beverages for the important carcinogenic contaminant ethyl carbamate is very time-consuming and expensive. Due to possible matrix interferences, sample cleanup using diatomaceous earth (Extrelut) column is required prior to gas chromatographic and mass spectrometric measurement. A limiting step in this process is the rotary evaporation of the eluate containing the analyte in organic solvents, which is currently conducted manually and requires approximately 20-30 min per sample. This paper introduces the use of a parallel evaporation device for ethyl carbamate analysis, which allows for the simultaneous evaporation of 12 samples to a specified residual volume without manual intervention. A more efficient and, less expensive analysis is therefore possible. The method validation showed no differences between the fully-automated parallel evaporation and the manual operation. The applicability was proven by analyzing authentic spirit samples from Germany, Canada and Brazil. It is interesting to note that Brazilian cachacas had a relatively high incidence for ethyl carbamate contamination (55% of all samples were above 0.15 mg/l), which may be of public health relevance and requires further evaluation.
Resumo:
The aim of this study was to compare the percentage of gutta-percha (PGP) in mesial root canals of mandibular molars obturated with LC (Lateral Compaction) or SC (Single Cone) ProTaper Universal System techniques at different levels of the root. Mesial root canals of 20 human permanent molars with similar anatomical characteristics were instrumented using the ProTaper Universal rotary system technique until the F2 instrument, with 20 canals filled by SC ProTaper Universal technique and 20 canals by the LC technique. The mesial roots were sectioned transversely to 3, 5, and 7 mm from the root apex. Digital images of specimens were obtained at MIC-D digital microscope in increases of 30 to 35X. The gutta-percha area was measured using ImageTool software. Data were analyzed using two-way ANOVA and Bonferroni test (a = 0.05). The SC technique provided greater PGP than the LC technique in the apical third (3 mm) (P < 0.001). In the other thirds (5 and 7 mm) there was no statistical difference between the two techniques regarding the PGP (P > 0.05). There was no statistically significant difference between thirds of the root canal for both techniques (P > 0.05). It was concluded that SC technique provided greater PGP than the LC technique in the apical third of mesial root canals of mandibular molars. There was no difference between the two techniques regarding the PGP in the cervical and middle thirds. Microsc. Res. Tech. 75:12291232, 2012. (C) 2012 Wiley Periodicals, Inc.