947 resultados para Roberts, William


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Open-irrigated radiofrequency catheter ablation (oiRFA) of atrial fibrillation (AF) imposes a volume load and risk of pulmonary edema. We sought to assess the effect of volume administration during ablation on left atrial (LA) pressure and B-type natriuretic peptide (BNP). Methods LA pressure was measured via transseptal sheath at the beginning and end of 44 LA ablation procedures in 42 patients. BNP plasma levels were measured before and after 10 procedures. Results A median of 3,255 (interquartile range [IQR], 2,014)-mL saline was administered during the procedure. During LA ablation, the median fluid balance was +1,438 (IQR, 1,109) mL and LA pressure increased by median 3.7 (IQR, 5.9) mm Hg (P < 0.001). LA pressure did not change in the 19 procedures with furosemide administration (median ΔP = −0.3 [IQR, 7.1] mm Hg, P = 0.334). The correlation of LA pressure and fluid balance was weak (rs = 0.383, P = 0.021). BNP decreased in all four procedures starting in AF or atrial tachycardia and then converting to sinus rhythm (P = 0.068), and increased in all six procedures starting and finishing in sinus rhythm (P = 0.028). After ablation, symptomatic volume overload responding to diuresis occurred in three patients. Conclusions A substantial intravascular volume load during oiRFA can be absorbed with little change in LA pressure, such that LA pressure is not a reliable indicator of the fluid balance. Subsequent redistribution of the volume load imposes a risk after the procedure. Conversion to sinus rhythm may improve ability to acutely accommodate the volume load.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is the maritime and sub–Antarctic contribution to the Scientific Committee for Antarctic Research (SCAR) Past Antarctic Ice Sheet Dynamics (PAIS) community Antarctic Ice Sheet reconstruction. The overarching aim for all sectors of Antarctica was to reconstruct the Last Glacial Maximum (LGM) ice sheet extent and thickness, and map the subsequent deglaciation in a series of 5000 year time slices. However, our review of the literature found surprisingly few high quality chronological constraints on changing glacier extents on these timescales in the maritime and sub–Antarctic sector. Therefore, in this paper we focus on an assessment of the terrestrial and offshore evidence for the LGM ice extent, establishing minimum ages for the onset of deglaciation, and separating evidence of deglaciation from LGM limits from those associated with later Holocene glacier fluctuations. Evidence included geomorphological descriptions of glacial landscapes, radiocarbon dated basal peat and lake sediment deposits, cosmogenic isotope ages of glacial features and molecular biological data. We propose a classification of the glacial history of the maritime and sub–Antarctic islands based on this assembled evidence. These include: (Type I) islands which accumulated little or no LGM ice; (Type II) islands with a limited LGM ice extent but evidence of extensive earlier continental shelf glaciations; (Type III) seamounts and volcanoes unlikely to have accumulated significant LGM ice cover; (Type IV) islands on shallow shelves with both terrestrial and submarine evidence of LGM (and/or earlier) ice expansion; (Type V) Islands north of the Antarctic Polar Front with terrestrial evidence of LGM ice expansion; and (Type VI) islands with no data. Finally, we review the climatological and geomorphological settings that separate the glaciological history of the islands within this classification scheme.