861 resultados para Response of linear systems
Resumo:
A series of experiments was conducted to examine the mechanism by which removal of the thyroid glands in seasonally suppressed rams brings about rapid testicular growth. In the first experiment, thyroidectomy at the nadir of the testicular cycle (late winter) initiated testis growth without any detectable change in the extent of spermatogenesis compared with sham-operated controls. The serum concentration of FSH, but not LH, was also markedly increased by thyroidectomy. In the second experiment, serum FSH concentration was again increased by thyroidectomy in late winter but there was no effect of thyroidectomy on LH concentration, LH pulses (measured in frequent blood samples) or testosterone concentration. Furthermore, there was no evidence of a change in central dopaminergic inhibition of GnRH, as measured by the pulsatile LH response to an i.m. injection of the dopaminergic D-2 agonist bromocriptine or antagonist sulpiride. The rapid increase in FSH concentration occurred despite a markedly increased serum inhibin A concentration in thyroidectomized rams. Therefore, the efficacy of inhibin feedback was examined by testing the FSH-suppressive effect of an inhibin preparation (5 ml charcoal-stripped bovine follicular fluid i.v.) in long-term thyroidectomized and thyroid intact castrated rams. Bovine follicular fluid suppressed FSH concentrations in control rams as expected but in marked contrast, was completely without effect in thyroidectomized animals. In castrated rams, the FSH concentration was only marginally increased by thyroidectomy, indicating that there is a major component of the mediation of the effects of thyroidectomy that is testicular in origin. It was concluded that a reduction in the ability of endogenous inhibin to inhibit FSH release at the pituitary, rather than a hypothalamic mechanism, is the primary cause of the stimulation of testis growth by thyroidectomy.
Resumo:
A range of linear polyurethanes featuring aliphatic, aromatic and ether residues have been prepared by co-polymerisation of novel 'masked' isocyanate A(2)-type monomers and diols. The reactive isocyanate monomers were generated in situ via the triphenylphosphine mediated decomposition of the heterocyclic disulfide, 1,2,4-dithiazolidine-3,5-dione. Two different synthetic approaches were examined and assessed for the construction of the novel A(2)-type monomers, which involved either coupling two 1,2,4-dithiazolidine-3,5-diones together through a spacer group or construction of 1,2,4-dithiazolidine-3,5-diones directly from diamines. The resulting polyurethanes were purified via solvent extraction and analysed using GPC, NMR and IR spectroscopic analyses. Molecular weight data were obtained and compared from both GPC and H-1 NMR (via end-group analysis) spectroscopic analysis. The thermal properties of the polyurethanes were determined using DSC and their solubility in common aprotic organic solvents was also assessed and related to their structural composition. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Inelastic neutron scattering spectroscopy has been used to observe and characterise hydrogen on the carbon component of a Pt/C catalyst. INS provides the complete vibration spectrum of coronene, regarded as a molecular model of a graphite layer. The vibrational modes are assigned with the aid of ab initio density functional theory calculations and the INS spectra by the a-CLIMAX program. A spectrum for which the H modes of coronene have been computationally suppressed, a carbon-only coronene spectrum, is a better representation of the spectrum of a graphite layer than is coronene itself. Dihydrogen dosing of a Pt/C catalyst caused amplification of the surface modes of carbon, an effect described as H riding on carbon. From the enhancement of the low energy carbon modes (100-600 cm(-1)) it is concluded that spillover hydrogen becomes attached to dangling bonds at the edges of graphitic regions of the carbon support. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Three new linear trinuclear nickel(II) complexes, [Ni-3(salpen)(2)(OAc)(2)(H2O)(2)]center dot 4H(2)O (1) (OAc = acetate, CH3COO-), [Ni-3(salpen)(2)(OBz)(2)] (2) (OBz=benzoate, PhCOO-) and [Ni-3(salpen)(2)(OCn)(2)(CH3CN)(2)] (4) (OCn = cinnamate, PhCH=CHCOO-), H(2)salpen = tetradentate ligand, N,N'-bis(salicylidene)-1,3-pentanediamine have been synthesized and characterized structurally and magnetically. The choice of solvent for growing single crystal was made by inspecting the morphology of the initially obtained solids with the help of SEM study. The magnetic properties of a closely related complex, [Ni-3(salpen)(2)(OPh)(2)(EtOH)] (3) (OPh = phenyl acetate, PhCH2COO-) whose structure and solution properties have been reported recently, has also been studied here. The structural analyses reveal that both phenoxo and carboxylate bridging are present in all the complexes and the three Ni(II) atoms remain in linear disposition. Although the Schiff base ligand and the syn-syn bridging bidentate mode of the carboxylate group remain the same in complexes 1-4, the change of alkyl/aryl group of the carboxylates brings about systematic variations between six- and five-coordination in the geometry of the terminal Ni(II) centres of the trinuclear units. The steric demand as well as hydrophobic nature of the alkyl/aryl group of the carboxylate is found to play a crucial role in the tuning of the geometry. Variable-temperature (2-300 K) magnetic susceptibility measurements show that complexes 1-4 are antiferromagnetically coupled (J = -3.2(1), -4.6(1). -3.2(1) and -2.8(1) cm(-1) in 1-4, respectively). Calculations of the zero-field splitting parameter indicate that the values of D for complexes 1-4 are in the high range (D = +9.1(2), +14.2(2), +9.8(2) and +8.6(1) cm(-1) for 1-4, respectively). The highest D value of +14.2(2) and +9.8(2) cm(-1) for complexes 2 and 3, respectively, are consistent with the pentacoordinated geometry of the two terminal nickel(II) ions in 2 and one terminal nickel(II) ion in 3. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a theoretical model of the torsional characteristics of parallel multi-part rope systems. In such systems, the ropes may cable, or wrap around each other, depending on the combination of applied torque, rope tension, length and spacing between the rope parts. Cabling constitutes a failure that might be retrievable but as such can seriously affect the performance of the rope system. The torsional characteristics of the system are very different before and after cabling, and theoretical models are given for both situations. Laboratory tests were performed on both two and four rope systems, with measurements being made of torque at rotations from 0 to 360 deg. Tests were run with different rope spacings, tensions and lengths and the results compared with predictions from the theoretical model. The conclusion from the test results was that the theoretical model predicts both the pre- and post-cabling torsional behaviour with an acceptable level of accuracy.
Resumo:
This paper deals with the energy consumption and the evaluation of the performance of air supply systems for a ventilated room involving high- and low-level supplies. The energy performance assessment is based on the airflow rate, which is related to the fan power consumption by achieving the same environmental quality performance for each case. Four different ventilation systems are considered: wall displacement ventilation, confluent jets ventilation, impinging jet ventilation and a high level mixing ventilation system. The ventilation performance of these systems will be examined by means of achieving the same Air Distribution Index (ADI) for different cases. The widely used high-level supplies require much more fan power than those for low-level supplies for achieving the same value of ADI. In addition, the supply velocity, hence the supply dynamic pressure, for a high-level supply is much larger than for low-level supplies. This further increases the power consumption for high-level supply systems. The paper considers these factors and attempts to provide some guidelines on the difference in the energy consumption associated with high and low level air supply systems. This will be useful information for designers and to the authors' knowledge there is a lack of information available in the literature on this area of room air distribution. The energy performance of the above-mentioned ventilation systems has been evaluated on the basis of the fan power consumed which is related to the airflow rate required to provide equivalent indoor environment. The Air Distribution Index (ADI) is used to evaluate the indoor environment produced in the room by the ventilation strategy being used. The results reveal that mixing ventilation requires the highest fan power and the confluent jets ventilation needs the lowest fan power in order to achieve nearly the same value of ADI.
Resumo:
Purpose – The purpose of this research is to show that reliability analysis and its implementation will lead to an improved whole life performance of the building systems, and hence their life cycle costs (LCC). Design/methodology/approach – This paper analyses reliability impacts on the whole life cycle of building systems, and reviews the up-to-date approaches adopted in UK construction, based on questionnaires designed to investigate the use of reliability within the industry. Findings – Approaches to reliability design and maintainability design have been introduced from the operating environment level, system structural level and component level, and a scheduled maintenance logic tree is modified based on the model developed by Pride. Different stages of the whole life cycle of building services systems, reliability-associated factors should be considered to ensure the system's whole life performance. It is suggested that data analysis should be applied in reliability design, maintainability design, and maintenance policy development. Originality/value – The paper presents important factors in different stages of the whole life cycle of the systems, and reliability and maintainability design approaches which can be helpful for building services system designers. The survey from the questionnaires provides the designers with understanding of key impacting factors.
Resumo:
Importance measures in reliability engineering are used to identify weak areas of a system and signify the roles of components in either causing or contributing to proper functioning of the system. Traditional importance measures for multistate systems mainly concern reliability importance of an individual component and seldom consider the utility performance of the systems. This paper extends the joint importance concepts of two components from the binary system case to the multistate system case. A joint structural importance and a joint reliability importance are defined on the basis of the performance utility of the system. The joint structural importance measures the relationship of two components when the reliabilities of components are not available. The joint reliability importance is inferred when the reliabilities of the components are given. The properties of the importance measures are also investigated. A case study for an offshore electrical power generation system is given.
Resumo:
In this work, a fault-tolerant control scheme is applied to a air handling unit of a heating, ventilation and air-conditioning system. Using the multiple-model approach it is possible to identify faults and to control the system under faulty and normal conditions in an effective way. Using well known techniques to model and control the process, this work focuses on the importance of the cost function in the fault detection and its influence on the reconfigurable controller. Experimental results show how the control of the terminal unit is affected in the presence a fault, and how the recuperation and reconfiguration of the control action is able to deal with the effects of faults.
Resumo:
Nonlinear system identification is considered using a generalized kernel regression model. Unlike the standard kernel model, which employs a fixed common variance for all the kernel regressors, each kernel regressor in the generalized kernel model has an individually tuned diagonal covariance matrix that is determined by maximizing the correlation between the training data and the regressor using a repeated guided random search based on boosting optimization. An efficient construction algorithm based on orthogonal forward regression with leave-one-out (LOO) test statistic and local regularization (LR) is then used to select a parsimonious generalized kernel regression model from the resulting full regression matrix. The proposed modeling algorithm is fully automatic and the user is not required to specify any criterion to terminate the construction procedure. Experimental results involving two real data sets demonstrate the effectiveness of the proposed nonlinear system identification approach.
Resumo:
Two different ways of performing low-energy electron diffraction (LEED) structure determinations for the p(2 x 2) structure of oxygen on Ni {111} are compared: a conventional LEED-IV structure analysis using integer and fractional-order IV-curves collected at normal incidence and an analysis using only integer-order IV-curves collected at three different angles of incidence. A clear discrimination between different adsorption sites can be achieved by the latter approach as well as the first and the best fit structures of both analyses are within each other's error bars (all less than 0.1 angstrom). The conventional analysis is more sensitive to the adsorbate coordinates and lateral parameters of the substrate atoms whereas the integer-order-based analysis is more sensitive to the vertical coordinates of substrate atoms. Adsorbate-related contributions to the intensities of integer-order diffraction spots are independent of the state of long-range order in the adsorbate layer. These results show, therefore, that for lattice-gas disordered adsorbate layers, for which only integer-order spots are observed, similar accuracy and reliability can be achieved as for ordered adsorbate layers, provided the data set is large enough.