951 resultados para Region of interest
Resumo:
I assessed the influence of the Keweenaw Current and spring thermal bar on the distribution of larval fishes and large zooplankton in Lake Superior. In 1998 and 1999, samples were collected from inshore (0.2 – 3.0 km from shore) and offshore (5.0 – 9.0 km from shore) locations on three transects off the western coast of the Keweenaw Peninsula, Michigan. For larval fishes, density and size distribution patterns of lake herring (Coregonus artedi), rainbow smelt (Osmerus mordax), burbot (Lota lota), deepwater sculpin (Myoxocephalus thompsoni), and spoonhead sculpin (Cottus ricei) suggest a seasonal inshore to offshore movement. For zooplankton, seasonal warming appeared to be the major factor that limited planktonic catches of the primarily benthic Mysisrelicta and Diporeia spp., while simultaneously stimulated growth and reproduction of the cladocerans Daphnia spp., Holopedium gibberum, and Bythotrephes cederstroemi. In contrast, calanoid copepods as a group were abundant throughout the entire sampling season. The greatest abundances of zooplankton were generally encountered offshore, even for the cladocerans, which apparently expanded from inshore to offshore locations with seasonal warming. In 2000, sampling efforts focused on lake herring. Samples were collected from surface waters at 0.1 – 17.0 km from shore on two transects. Lake herring larvae were also reared in the laboratory from eggs in order to validate the use of otolith microstructure for aging. Increment deposition was not statistically different from a daily rate starting from 28 days after hatching, near the time of yolk-sac absorption, but larvae with lower growth rates could not be aged as accurately. In Lake Superior, lake herring tended to be slightly more abundant, larger, and older at inshore locations, but a dense patch of younger larvae was also encountered 7 – 13 km from shore. The distribution iiipatterns suggest that larvae were transported by prevailing currents into the study region, possibly from the more productive spawning regions in western Lake Superior. Growth rates were suppressed at offshore locations where temperatures were less than 8°C. These results indicate that lake herring larvae may be transported far distances from spawning concentrations by longshore currents, and water temperatures may largely control their growth.
Resumo:
Computer-aided surgery (CAS) allows for real-time intraoperative feedback resulting in increased accuracy, while reducing intraoperative radiation. CAS is especially useful for the treatment of certain pelvic ring fractures, which necessitate the precise placement of screws. Flouroscopy-based CAS modules have been developed for many orthopedic applications. The integration of the isocentric flouroscope even enables navigation using intraoperatively acquired three-dimensional (3D) data, though the scan volume and imaging quality are limited. Complicated and comprehensive pathologies in regions like the pelvis can necessitate a CT-based navigation system because of its larger field of view. To be accurate, the patient's anatomy must be registered and matched with the virtual object (CT data). The actual precision within the region of interest depends on the area of the bone where surface matching is performed. Conventional surface matching with a solid pointer requires extensive soft tissue dissection. This contradicts the primary purpose of CAS as a minimally invasive alternative to conventional surgical techniques. We therefore integrated an a-mode ultrasound pointer into the process of surface matching for pelvic surgery and compared it to the conventional method. Accuracy measurements were made in two pelvic models: a foam model submerged in water and one with attached porcine muscle tissue. Three different tissue depths were selected based on CT scans of 30 human pelves. The ultrasound pointer allowed for registration of virtually any point on the pelvis. This method of surface matching could be successfully integrated into CAS of the pelvis.
Resumo:
Biogeochemical processes in the coastal region, including the coastal area of the Great Lakes, are of great importance due to the complex physical, chemical and biological characteristics that differ from those on either the adjoining land or open water systems. Particle-reactive radioisotopes, both naturally occurring (210Pb, 210Po and 7Be) and man-made (137Cs), have proven to be useful tracers for these processes in many systems. However, a systematic isotope study on the northwest coast of the Keweenaw Peninsula in Lake Superior has not yet been performed. In this dissertation research, field sampling, laboratory measurements and numerical modeling were conducted to understand the biogeochemistry of the radioisotope tracers and some particulate-related coastal processes. In the first part of the dissertation, radioisotope activities of 210Po and 210Pb in a variability of samples (dissolved, suspended particle, sediment trap materials, surficial sediment) were measured. A completed picture of the distribution and disequilibrium of this pair of isotopes was drawn. The application of a simple box model utilizing these field observations reveals short isotope residence times in the water column and a significant contribution of sediment resuspension (for both particles and isotopes). The results imply a highly dynamic coastal region. In the second part of this dissertation, this conclusion is examined further. Based on intensive sediment coring, the spatial distribution of isotope inventories (mainly 210Pb, 137Cs and 7Be) in the nearshore region was determined. Isotope-based focusing factors categorized most of the sampling sites as non- or temporary depositional zones. A twodimensional steady-state box-in-series model was developed and applied to individual transects with the 210Pb inventories as model input. The modeling framework included both water column and upper sediments down to the depth of unsupported 210Pb penetration. The model was used to predict isotope residence times and cross-margin fluxes of sediments and isotopes at different locations along each transect. The time scale for sediment focusing from the nearshore to offshore regions of the transect was on the order of 10 years. The possibility of sediment longshore movement was indicated by high inventory ratios of 137Cs: 210Pb. Local deposition of fine particles, including fresh organic carbon, may explain the observed distribution of benthic organisms such as Diporeia. In the last part of this dissertation, isotope tracers, 210Pb and 210Po, were coupled into a hydrodynamic model for Lake Superior. The model was modified from an existing 2-D finite difference physical-biological model which has previously been successfully applied on Lake Superior. Using the field results from part one of this dissertation as initial conditions, the model was used to predict the isotope distribution in the water column; reasonable results were achieved. The modeling experiments demonstrated the potential for using a hydrodynamic model to study radioisotope biogeochemistry in the lake, although further refinements are necessary.
Resumo:
PURPOSE: To investigate the reproducibility of dGEMRIC in the assessment of cartilage health of the adult asymptomatic hip joint. MATERIALS AND METHODS: Fifteen asymptomatic volunteers (mean age, 26.3 years +/- 3.0) were preliminarily studied. Any volunteer that was incidentally diagnosed with damaged cartilage on MRI (n = 5) was excluded. Ten patients that had no evidence of prior cartilage damage (mean age, 26.2 years +/- 3.4) were evaluated further in this study. The reproducibility of dGEMRIC was assessed with two T1(Gd) exams performed 4 weeks apart in these volunteers. The protocol involved an initial standard MRI to confirm healthy cartilage, which was then followed by dGEMRIC. The second scan included only the repeat dGEMRIC. Region of interest (ROI) analyses for T1(Gd)-measurement was performed in seven radial reformats. Statistical analysis included the student's t-test and intra-class correlation (ICC) measurement to assess reproducibility. RESULTS: Overall 70 ROIs were studied. Mean cartilage T1(Gd) values at various loci ranged from 560.9 ms to 684.4 ms at the first set of readings and 551.5 ms to 662.2 ms in the second one. The mean difference per region of interest between the two T1(Gd)-measurements ranged from 21.4 ms (3.7%) to 45.0 ms (6.8%), which was not found to be statistically significant (P = 0.153). There was a high reproducibility detected (ICC range, 0.667-0.915). Intra- and Inter-observer analyses proved a high agreement for T1(Gd) assessment (0.973 and 0.932). CONCLUSION: We found dGEMRIC to be a reliable tool in the assessment of cartilage health status in adult hip joints.
Resumo:
OBJECTIVE: The aim of this study was to use morphological as well as biochemical (T2 and T2* relaxation times and diffusion-weighted imaging (DWI)) magnetic resonance imaging (MRI) for the evaluation of healthy cartilage and cartilage repair tissue after matrix-associated autologous chondrocyte transplantation (MACT) of the ankle joint. MATERIALS AND METHODS: Ten healthy volunteers (mean age, 32.4 years) and 12 patients who underwent MACT of the ankle joint (mean age, 32.8 years) were included. In order to evaluate possible maturation effects, patients were separated into short-term (6-13 months) and long-term (20-54 months) follow-up cohorts. MRI was performed on a 3.0-T magnetic resonance (MR) scanner using a new dedicated eight-channel foot-and-ankle coil. Using high-resolution morphological MRI, the magnetic resonance observation of cartilage repair tissue (MOCART) score was assessed. For biochemical MRI, T2 mapping, T2* mapping, and DWI were obtained. Region-of-interest analysis was performed within native cartilage of the volunteers and control cartilage as well as cartilage repair tissue in the patients subsequent to MACT. RESULTS: The overall MOCART score in patients after MACT was 73.8. T2 relaxation times (approximately 50 ms), T2* relaxation times (approximately 16 ms), and the diffusion constant for DWI (approximately 1.3) were comparable for the healthy volunteers and the control cartilage in the patients after MACT. The cartilage repair tissue showed no significant difference in T2 and T2* relaxation times (p > or = 0.05) compared to the control cartilage; however, a significantly higher diffusivity (approximately 1.5; p < 0.05) was noted in the cartilage repair tissue. CONCLUSION: The obtained results suggest that besides morphological MRI and biochemical MR techniques, such as T2 and T2* mapping, DWI may also deliver additional information about the ultrastructure of cartilage and cartilage repair tissue in the ankle joint using high-field MRI, a dedicated multichannel coil, and sophisticated sequences.
Resumo:
OBJECT: The localization of any given target in the brain has become a challenging issue because of the increased use of deep brain stimulation to treat Parkinson disease, dystonia, and nonmotor diseases (for example, Tourette syndrome, obsessive compulsive disorders, and depression). The aim of this study was to develop an automated method of adapting an atlas of the human basal ganglia to the brains of individual patients. METHODS: Magnetic resonance images of the brain specimen were obtained before extraction from the skull and histological processing. Adaptation of the atlas to individual patient anatomy was performed by reshaping the atlas MR images to the images obtained in the individual patient using a hierarchical registration applied to a region of interest centered on the basal ganglia, and then applying the reshaping matrix to the atlas surfaces. RESULTS: Results were evaluated by direct visual inspection of the structures visible on MR images and atlas anatomy, by comparison with electrophysiological intraoperative data, and with previous atlas studies in patients with Parkinson disease. The method was both robust and accurate, never failing to provide an anatomically reliable atlas to patient registration. The registration obtained did not exceed a 1-mm mismatch with the electrophysiological signatures in the region of the subthalamic nucleus. CONCLUSIONS: This registration method applied to the basal ganglia atlas forms a powerful and reliable method for determining deep brain stimulation targets within the basal ganglia of individual patients.
Resumo:
Paramyxovirus cell entry is controlled by the concerted action of two viral envelope glycoproteins, the fusion (F) and the receptor-binding (H) proteins, which together with a cell surface receptor mediate plasma membrane fusion activity. The paramyxovirus F protein belongs to class I viral fusion proteins which typically contain two heptad repeat regions (HR). Particular to paramyxovirus F proteins is a long intervening sequence (IS) located between both HR domains. To investigate the role of the IS domain in regulating fusogenicity, we mutated in the canine distemper virus (CDV) F protein IS domain a highly conserved leucine residue (L372) previously reported to cause a hyperfusogenic phenotype. Beside one F mutant, which elicited significant defects in processing, transport competence, and fusogenicity, all remaining mutants were characterized by enhanced fusion activity despite normal or slightly impaired processing and cell surface targeting. Using anti-CDV-F monoclonal antibodies, modified conformational F states were detected in F mutants compared to the parental protein. Despite these structural differences, coimmunoprecipitation assays did not reveal any drastic modulation in F/H avidity of interaction. However, we found that F mutants had significantly enhanced fusogenicity at low temperature only, suggesting that they folded into conformations requiring less energy to activate fusion. Together, these data provide strong biochemical and functional evidence that the conserved leucine 372 at the base of the HRA coiled-coil of F(wt) controls the stabilization of the prefusogenic state, restraining the conformational switch and thereby preventing extensive cell-cell fusion activity.
Resumo:
The article discusses the problems of applicable law to copyright infringements online. It firstly identifies the main problems related to the well established territoriality principle and the lex loci protectionis rules. Then; the discussion focuses on the "ubiquitous infringement" rule recently proposed by the American Law Institute (ALI) and the European Max Planck Group for Conflicts of Law and Intellectual Propoperty (CLIP). The author strongly welcomes a compromise between the territoriality and universality approaches suggested in respect of ubiquitous infringement cases. At the same time; the paper draws the attention that the interests of "good faith" online service providers (such as legal certainty and foreseeability) have been until now underestimated and invites to take these interests into account when merging the projects into a common international proposal.
Resumo:
We present the experimental phase diagram of LiHoxEr1-xF4, a dilution series of dipolar-coupled model magnets. The phase diagram was determined using a combination of ac susceptibility and neutron scattering. Three unique phases in addition to the Ising ferromagnet LiHoF4 and the XY antiferromagnet LiErF4 have been identified. Below x = 0.86, an embedded spin-glass phase is observed, where a spin glass exists within the ferromagnetic structure. Below x = 0.57, an Ising spin glass is observed consisting of frozen needlelike clusters. For x ∼ 0.3–0.1, an antiferromagnetically coupled spin glass occurs. A reduction of TC(x) for the ferromagnet is observed which disobeys the mean-field predictions that worked for LiHoxY1-xF4.
Resumo:
OBJECTIVE To determine whether myocardial contrast echocardiography can be used to quantify collateral derived myocardial flow in humans. METHODS In 25 patients undergoing coronary angioplasty, a collateral flow index (CFI) was determined using intracoronary wedge pressure distal to the stenosis to be dilated, with simultaneous mean aortic pressure measurements. During balloon occlusion, echo contrast was injected into both main coronary arteries simultaneously. Echocardiography of the collateral receiving myocardial area was performed. The time course of myocardial contrast enhancement in images acquired at end diastole was quantified by measuring pixel intensities (256 grey units) within a region of interest. Perfusion variables, such as background subtracted peak pixel intensity and contrast transit rate, were obtained from a fitted gamma variate curve. RESULTS 16 patients had a left anterior descending coronary artery stenosis, four had a left circumflex coronary artery stenosis, and five had a right coronary artery stenosis. The mean (SD) CFI was 19 (12)% (range 0-47%). Mean contrast transit rate was 11 (8) seconds. In 17 patients, a significant collateral contrast effect was observed (defined as peak pixel intensity more than the mean + 2 SD of background). Peak pixel intensity was linearly related to CFI in patients with a significant contrast effect (p = 0.002, r = 0.69) as well as in all patients (p = 0.0003, r = 0.66). CONCLUSIONS Collateral derived perfusion of myocardial areas at risk can be demonstrated using intracoronary echo contrast injections. The peak echo contrast effect is directly related to the magnitude of collateral flow.
Resumo:
PURPOSE The anterior maxilla, sometimes also called premaxilla, is an area frequently requiring surgical interventions. The objective of this observational study was to identify and assess accessory bone channels other than the nasopalatine canal in the anterior maxilla using limited cone beam computed tomography (CBCT). METHODS A total of 176 cases fulfilled the inclusion criteria comprising region of interest, quality of CBCT image, and absence of pathologic lesions or retained teeth. Any bone canal with a minimum diameter of 1.00 mm other than the nasopalatine canal was analyzed regarding size, location, and course, as well as patient gender and age. RESULTS A total of 67 accessory canals ≥1.00 mm were found in 49 patients (27.8%). A higher frequency of accessory canals was observed in males (33.0%) than in females (22.7%) (p = 0.130). Accessory canals occurred more frequently in older rather than younger patients (p = 0.115). The mean diameter of accessory canals was 1.31 ± 0.26 mm (range 1.01-2.13 mm). Gender and age did not significantly influence the diameter. Accessory canals were found palatal to all anterior teeth, but most frequently palatal to the central incisors. In 56.7%, the accessory canals curved superolaterally and communicated with the ipsilateral alveolar extension of the canalis sinuosus. CONCLUSIONS The study confirms the presence of bone channels within the anterior maxilla other than the nasopalatine canal. More than half of these accessory bone canals communicated with the canalis sinuosus. From a clinical perspective, studies are needed to determine the content of these accessory canals.
Resumo:
OBJECTIVES Osteocytes, the most common cells of the bone, are buried in lacunae. Density and area of the osteocyte lacunae change with increasing maturation of the newly formed bone. Evaluation of osteocyte lacunae can therefore provide insights into the process of graft consolidation. MATERIALS AND METHODS Here, we determined the osteocyte lacunar density (number of osteocyte lacunae per bone area; N.Ot/BAr) and the osteocyte lacunar area in μm(2) (Lac.Ar) in histological specimens 6 and 12 weeks after the sinuses of 10 minipigs were augmented with Bio-Oss(®) , a deproteinized bovine bone mineral, and Ostim(®) , an aqueous paste of synthetic nanoparticular hydroxyapatite. The region of interest was defined by the following criteria: (i) >1 mm from the host bone, (ii) >0.5 mm from the sinus mucosa, (iii) minimum area of 0.2 mm(2) , and (iv) bone tissue spanning at least two bone substitute particles. RESULTS The overall osteocyte lacunar density was significantly higher in the Bio-Oss(®) group than in the Ostim(®) group and decreased during the observation period at a similar range in both groups. The osteocyte lacunar area was smaller in the Bio-Oss(®) group than the Ostim(®) group but there was no significant change within the groups over time. CONCLUSIONS These results suggest that bone substitutes affect the osteocyte lacunar density and the osteocyte lacunar area in the newly formed bone within the augmented sinus in this particular model situation. These measures can provide insights into the maturation of newly formed bone in the augmented sinus.
Resumo:
It is unknown how receptor binding by the paramyxovirus attachment proteins (HN, H, or G) triggers the fusion (F) protein to fuse with the plasma membrane for cell entry. H-proteins of the morbillivirus genus consist of a stalk ectodomain supporting a cuboidal head; physiological oligomers consist of non-covalent dimer-of-dimers. We report here the successful engineering of intermolecular disulfide bonds within the central region (residues 91-115) of the morbillivirus H-stalk; a sub-domain that also encompasses the putative F-contacting section (residues 111-118). Remarkably, several intersubunit crosslinks abrogated membrane fusion, but bioactivity was restored under reducing conditions. This phenotype extended equally to H proteins derived from virulent and attenuated morbillivirus strains and was independent of the nature of the contacted receptor. Our data reveal that the morbillivirus H-stalk domain is composed of four tightly-packed subunits. Upon receptor binding, these subunits structurally rearrange, possibly inducing conformational changes within the central region of the stalk, which, in turn, promote fusion. Given that the fundamental architecture appears conserved among paramyxovirus attachment protein stalk domains, we predict that these motions may act as a universal paramyxovirus F-triggering mechanism.