910 resultados para Recombinant Fusion Proteins -- metabolism


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trauma deaths are a result of hemorrhage in 37% of civilians and 47% military personnel and are the primary cause of death for individuals under 44 years of age. Current techniques used to treat hemorrhage are inadequate for severe bleeding. Preliminary research indicates that fibrin sealants (FS) alone or in combination with a dressing may be more effective; however, it has not been economically feasible for widespread use because of prohibitive costs related to procuring the proteins. To meet future demands for hemostatic therapies, FS will likely include recombinant human fibrinogen (rFI) and recombinant human Factor XIII (rFXIII). The underlying hypothesis of the research presented in this dissertation is that a liquid fibrin sealant (LFS) composed of recombinant FI, FXIII and FIIa in optimized proportions can assist hemostasis in the presence and absence of a bioresorbable bandage while using considerably fewer biologics than commercial products currently available. This dissertation characterized rFI produced in the milk of transgenic cows, plasma-derived thrombin (pdFIIa) activated by sodium citrate and rFXIIIa expressed in genetically engineered Pichia pastoris with respect to their capacity to serve as components in a LFS. The ratios of these factors were optimized to yield a LFS with a rapid clot formation rate and high viscoelastic strength. This optimized LFS was preliminarily tested ex vivo and in vivo. The clotting kinetics and viscoelastic strength of our optimized LFS was equivalent to those of a commercially available LFS; however, it uses approximately 75% less fibrinogen and thrombin. Our optimal LFS successfully achieved hemostasis in a significant number of the wounds that included extensive tissue and vascular damage. LFS applied without the assistance of a dressing was able to stop bleeding of oozing wounds or those with small vessels; however, a scaffold was needed when wounds contained large vasculature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Xylella fastidiosa is a Gram-negative xylem-limited plant pathogenic bacterium responsible for several economically important crop diseases. Here, we present a novel and efficient protein refolding protocol for the solubilization and purification of recombinant X. fastidiosa peptidoglycan-associated lipoprotein (XfPal). Pal is an outer membrane protein that plays important roles in maintaining the integrity of the cell envelope and in bacterial pathogenicity. Because Pal has a highly hydrophobic N-terminal domain, the heterologous expression studies necessary for structural and functional protein characterization are laborious once the recombinant protein is present in inclusion bodies. Our protocol based on the denaturation of the XfPal-enriched inclusion bodies with 8 M urea followed by buffer-exchange steps via dialysis proved effective for the solubilization and subsequent purification of XfPal, allowing us to obtain a large amount of relatively pure and folded protein. In addition, XfPal was biochemically and functionally characterized. The method for purification reported herein is valuable for further research on the three-dimensional structure and function of Pal and other outer membrane proteins and can contribute to a better understanding of the role of these proteins in bacterial pathogenicity, especially with regard to the plant pathogen X. fastidiosa. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arthrogryposisrenal dysfunctioncholestasis (ARC) syndrome is a rare autosomal recessive multisystem disorder caused by mutations in vacuolar protein sorting 33 homologue B (VPS33B) and VPS33B interacting protein, apicalbasolateral polarity regulator (VIPAR). Cardinal features of ARC include congenital joint contractures, renal tubular dysfunction, cholestasis, severe failure to thrive, ichthyosis, and a defect in platelet alpha-granule biogenesis. Most patients with ARC do not survive past the first year of life. We report two patients presenting with a mild ARC phenotype, now 5.5 and 3.5 years old. Both patients were compound heterozygotes with the novel VPS33B donor splice-site mutation c.1225+5G>C in common. Immunoblotting and complementary DNA analysis suggest expression of a shorter VPS33B transcript, and cell-based assays show that c.1225+5G>C VPS33B mutant retains some ability to interact with VIPAR (and thus partial wild-type function). This study provides the first evidence of genotypephenotype correlation in ARC and suggests that VPS33B c.1225+5G>C mutation predicts a mild ARC phenotype. We have established an interactive online database for ARC (https://grenada.lumc.nl/LOVD2/ARC) comprising all known variants in VPS33B and VIPAR. Also included in the database are 15 novel pathogenic variants in VPS33B and five in VIPAR. Hum Mutat 33:16561664, 2012. (c) 2012 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein interactions are crucial for most cellular process. Thus, rationally designed peptides that act as competitive assembly inhibitors of protein interactions by mimicking specific, determined structural elements have been extensively used in clinical and basic research. Recently, mammalian cells have been shown to contain a large number of intracellular peptides of unknown function. Here, we investigate the role of several of these natural intracellular peptides as putative modulators of protein interactions that are related to Ca2+-calmodulin (CaM) and 14-3-3 epsilon, which are proteins that are related to the spatial organization of signal transduction within cells. At concentrations of 1-50 mu M, most of the peptides that are investigated in this study modulate the interactions of CaM and 14-3-3 epsilon with proteins from the mouse brain cytoplasm or recombinant thimet oligopeptidase (EP24.15) in vitro, as measured by surface plasmon resonance. One of these peptides (VFDVELL; VFD-7) increases the cytosolic Ca2+ concentration in a dose-dependent manner but only if introduced into HEK293 cells, which suggests a wide biological function of this peptide. Therefore, it is exciting to suggest that natural intracellular peptides are novel modulators of protein interactions and have biological functions within cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work describes the effects of the cell surface display of a synthetic phytochelatin in the highly metal tolerant bacterium Cupriavidus metallidurans CH34. The EC20sp synthetic phytochelatin gene was fused between the coding sequences of the signal peptide (SS) and of the autotransporter beta-domain of the Neisseria gonorrhoeae IgA protease precursor (IgA beta), which successfully targeted the hybrid protein toward the C. metallidurans outer membrane. The expression of the SS-EC20sp-IgA beta gene fusion was driven by a modified version of the Bacillus subtilis mrgA promoter showing high level basal gene expression that is further enhanced by metal presence in C. metallidurans. The recombinant strain showed increased ability to immobilize Pb2+, Zn2+, Cu2+, Cd2+, Mn2+, and Ni2+ ions from the external medium when compared to the control strain. To ensure plasmid stability and biological containment, the MOB region of the plasmid was replaced by the E. coli hok/sok coding sequence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Visceral leishmaniasis (VL) is a serious lethal parasitic disease caused by Leishmania donovani in Asia and by Leishmania infantum chagasi in southern Europe and South America. VL is endemic in 47 countries with an annual incidence estimated to be 500 000 cases. This high incidence is due in part to the lack of an efficacious vaccine. Here, we introduce an innovative approach to directly identify parasite vaccine candidate antigens that are abundantly produced in vivo in humans with VL. We combined RP-HPLC and mass spectrometry and categorized three L. infantum chagasi proteins, presumably produced in spleen, liver and bone marrow lesions and excreted in the patients urine. Specifically, these proteins were the following: Li-isd1 (XP_001467866.1), Li-txn1 (XP_001466642.1) and Li-ntf2 (XP_001463738.1). Initial vaccine validation studies were performed with the rLi-ntf2 protein produced in Escherichia coli mixed with the adjuvant BpMPLA-SE. This formulation stimulated potent Th1 response in BALB/c mice. Compared to control animals, mice immunized with Li-ntf2+ BpMPLA-SE had a marked parasite burden reduction in spleens at 40 days post-challenge with virulent L. infantum chagasi. These results strongly support the proposed antigen discovery strategy of vaccine candidates to VL and opens novel possibilities for vaccine development to other serious infectious diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Daily intake of conjugated linoleic acid (CLA) has been shown to reduce body fat accumulation and to increase body metabolism; this latter effect has been often associated with the up-regulation of uncoupling proteins (UCPs). Here we addressed the effects of a CLA-supplemented murine diet (similar to 2 % CLA mixture, cis-9, trans-10 and trans-10, cis-12 isomers; 45 % of each isomer on alternating days) on mitochondrial energetics, UCP2 expression/activity in the liver and other associated morphological and functional parameters, in C57BL/6 mice. Diet supplementation with CLA reduced both lipid accumulation in adipose tissues and triacylglycerol plasma levels, but did not augment hepatic lipid storage. Livers of mice fed a diet supplemented with CLA showed high UCP2 mRNA levels and the isolated hepatic mitochondria showed indications of UCP activity: in the presence of guanosine diphosphate, the higher stimulation of respiration promoted by linoleic acid in mitochondria from the CLA mice was almost completely reduced to the level of the stimulation from the control mice. Despite the increased generation of reactive oxygen species through oxi-reduction reactions involving NAD(+)/NADH in the Krebs cycle, no oxidative stress was observed in the liver. In addition, in the absence of free fatty acids, basal respiration rates and the phosphorylating efficiency of mitochondria were preserved. These results indicate a beneficial and secure dose of CLA for diet supplementation in mice, which induces UCP2 overexpression and UCP activity in mitochondria while preserving the lipid composition and redox state of the liver.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dengue virus non-structural 1 (NS1) protein contributes to evasion of host immune defenses and represents a target for immune responses. Evidences generated in experimental models, as well as the immune responses elicited by infected individuals, showed that induction of anti-NS1 immunity correlates with protective immunity but may also result in the generation of cross-reactive antibodies that recognize platelets and proteins involved in the coagulation cascade. In the present work, we evaluated the immune responses, protection to type 2 dengue virus (DENV2) challenges and safety parameters in BALB/c mice vaccinated with a recombinant NS1 protein in combination with three different adjuvants: aluminum hydroxide (alum), Freund's adjuvant (FA) or a genetically detoxified derivative of the heat-labile toxin (LTG33D), originally produced by some enterotoxigenic Escherichia coil (ETEC) strains. Mice were subcutaneously (s.c.) immunized with different vaccine formulations and the induced NS1-specific responses, including serum antibodies and T cell responses, were measured. Mice were also subjected to lethal challenges with the DENV2 NGC strain. The results showed that maximal protective immunity (50%) was achieved in mice vaccinated with NS1 in combination with LIG33D. Analyses of the NS1-specific immune responses showed that the anti-virus protection correlated mainly with the serum anti-NS1 antibody responses including higher avidity to the target antigen. Mice immunized with LTG33D elicited a prevailing IgG2a subclass response and generated antibodies with stronger affinity to the antigen than those generated in mice immunized with the other vaccine formulations. The vaccine formulations were also evaluated regarding induction of deleterious side effects and, in contrast to mice immunized with the FA-adjuvanted vaccine, no significant hepatic damage or enhanced C-reactive protein levels were detected in mice immunized with NS1 and LTG33D. Similarly, no detectable alterations in bleeding time and hematological parameters were detected in mice vaccinated with NS1 and LTG33D. Altogether, these results indicate that the combination of a purified recombinant NS1 and a nontoxic LT derivative is a promising alternative for the generation of safe and effective protein-based anti-dengue vaccine. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Leptospirosis is considered a re-emerging infectious disease caused by pathogenic spirochaetes of the genus Leptospira. Pathogenic leptospires have the ability to survive and disseminate to multiple organs after penetrating the host. Leptospires were shown to express surface proteins that interact with the extracellular matrix (ECM) and to plasminogen (PLG). This study examined the interaction of two putative leptospiral proteins with laminin, collagen Type I, collagen Type IV, cellular fibronectin, plasma fibronectin, PLG, factor H and C4bp. Results: We show that two leptospiral proteins encoded by LIC11834 and LIC12253 genes interact with laminin in a dose - dependent and saturable mode, with dissociation equilibrium constants (K-D) of 367.5 and 415.4 nM, respectively. These proteins were named Lsa33 and Lsa25 (Leptospiral surface adhesin) for LIC11834 and LIC12253, respectively. Metaperiodate - treated laminin reduced Lsa25 - laminin interaction, suggesting that sugar moieties of this ligand participate in this interaction. The Lsa33 is also PLG - binding receptor, with a K-D of 23.53 nM, capable of generating plasmin in the presence of an activator. Although in a weak manner, both proteins interact with C4bp, a regulator of complement classical route. In silico analysis together with proteinase K and immunoflorescence data suggest that these proteins might be surface exposed. Moreover, the recombinant proteins partially inhibited leptospiral adherence to immobilized laminin and PLG. Conclusions: We believe that these multifunctional proteins have the potential to participate in the interaction of leptospires to hosts by mediating adhesion and by helping the bacteria to escape the immune system and to overcome tissue barriers. To our knowledge, Lsa33 is the first leptospiral protein described to date with the capability of binding laminin, PLG and C4bp in vitro.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Although the molecular pathogenesis of pituitary adenomas has been assessed by several different techniques, it still remains partially unclear. Ribosomal proteins (RPs) have been recently related to human tumorigenesis, but they have not yet been evaluated in pituitary tumorigenesis. Objective: The aim of this study was to introduce serial analysis of gene expression (SAGE), a high-throughput method, in pituitary research in order to compare differential gene expression. Methods: Two SAGE cDNA libraries were constructed, one using a pool of mRNA obtained from five GH-secreting pituitary tumors and another from three normal pituitaries. Genes differentially expressed between the libraries were further validated by real-time PCR in 22 GH-secreting pituitary tumors and in 15 normal pituitaries. Results: Computer-generated genomic analysis tools identified 13 722 and 14 993 exclusive genes in normal and adenoma libraries respectively. Both shared 6497 genes, 2188 were underexpressed and 4309 overexpressed in tumoral library. In adenoma library, 33 genes encoding RPs were underexpressed. Among these, RPSA, RPS3, RPS14, and RPS29 were validated by real-time PCR. Conclusion: We report the first SAGE library from normal pituitary tissue and GH-secreting pituitary tumor, which provide quantitative assessment of cellular transcriptome. We also validated some downregulated genes encoding RPs. Altogether, the present data suggest that the underexpression of the studied RP genes possibly collaborates directly or indirectly with other genes to modify cell cycle arrest, DNA repair, and apoptosis, leading to an environment that might have a putative role in the tumorigenesis, introducing new perspectives for further studies on molecular genesis of somatotrophinomas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bananas (Musa spp.) are highly perishable fruit of notable economic and nutritional relevance. Because the identification of proteins involved in metabolic pathways could help to extend green-life and improve the quality of the fruit, this study aimed to compare the proteins of banana pulp at the pre-climacteric and climacteric stages. The use of two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) revealed 50 differentially expressed proteins, and comparing those proteins to the Mass Spectrometry Protein Sequence Database (MSDB) identified 26 known proteins. Chitinases were the most abundant types of proteins in unripe bananas, and two isoforms in the ripe fruit have been implicated in the stress/defense response. In this regard, three heat shock proteins and isoflavone reductase were also abundant at the climacteric stage. Concerning fruit quality, pectate lyase, malate dehydrogenase, and starch phosphorylase accumulated during ripening. In addition to the ethylene formation enzyme amino cyclo carboxylic acid oxidase, the accumulation of S-adenosyl-L-homocysteine hydrolase was needed because of the increased ethylene synthesis and DNA methylation that occurred in ripening bananas. Differential analysis provided information on the ripening-associated changes that occurred in proteins involved in banana flavor, texture, defense, synthesis of ethylene, regulation of expression, and protein folding, and this analysis validated previous data on the transcripts during ripening. In this regard, the differential proteomics of fruit pulp enlarged our understanding of the process of banana ripening. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND/OBJECTIVES: Serum amyloid A (SAA) is an acute-phase protein that has been recently correlated with obesity and insulin resistance. Therefore, we first examined whether human recombinant SAA (rSAA) could affect the proliferation, differentiation and metabolism of 3T3-L1 preadipocytes. DESIGN: Preadipocytes were treated with rSAA and analyzed for changes in viability and [H-3-methyl]-thymidine incorporation as well as cell cycle perturbations using flow cytometry analysis. The mRNA expression profiles of adipogenic factors during the differentiation protocol were also analyzed using real-time PCR. After differentiation, 2-deoxy-[1,2-H-3]-glucose uptake and glycerol release were evaluated. RESULTS: rSAA treatment caused a 2.6-fold increase in cell proliferation, which was consistent with the results from flow cytometry showing that rSAA treatment augmented the percentage of cells in the S phase (60.9 +/- 0.54%) compared with the control cells (39.8 +/- 2.2%, ***P<0.001). The rSAA-induced cell proliferation was mediated by the ERK1/2 signaling pathway, which was assessed by pretreatment with the inhibitor PD98059. However, the exposure of 3T3-L1 cells to rSAA during the differentiation process resulted in attenuated adipogenesis and decreased expression of adipogenesis-related factors. During the first 72 h of differentiation, rSAA inhibited the differentiation process by altering the mRNA expression kinetics of adipogenic transcription factors and proteins, such as PPAR gamma 2 (peroxisome proliferator-activated receptor gamma 2), C/EBP beta (CCAAT/enhancer-binding protein beta) and GLUT4. rSAA prevented the intracellular accumulation of lipids and, in fully differentiated cells, increased lipolysis and prevented 2-deoxy-[1,2-H-3]-glucose uptake, which favors insulin resistance. Additionally, rSAA stimulated the secretion of proinflammatory cytokines interleukin 6 and tumor necrosis factor alpha, and upregulated SAA3 mRNA expression during adipogenesis. CONCLUSIONS: We showed that rSAA enhanced proliferation and inhibited differentiation in 3T3-L1 preadipocytes and altered insulin sensitivity in differentiated cells. These results highlight the complex role of SAA in the adipogenic process and support a direct link between obesity and its co-morbidities such as type II diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low-level laser irradiation (LLLI) and recombinant human bone morphogenetic protein type 2 (rhBMP-2) have been used to stimulate bone formation. LLLI stimulates proliferation of osteoblast precursor cells and cell differentiation and rhBMP-2 recruits osteoprogenitor cells to the bone healing area. This in vivo study evaluated the effects of LLLI and rhBMP-2 on the bone healing process in rats. Critical bone defects were created in the parietal bone in 42 animals, and the animals were divided into six treatment groups: (1) laser, (2) 7 mu g of rhBMP-2, (3) laser and 7 mu g of rhBMP-2, (4) 7 mu g of rhBMP-2/monoolein gel, (5) laser and 7 mu g rhBMP-2/monoolein gel, and (6) critical bone defect controls. A gallium-aluminum-arsenide diode laser was used (wavelength 780 nm, output power 60 mW, beam area 0.04 cm(2), irradiation time 80 s, energy density 120 J/cm(2), irradiance 1.5 W/cm(2)). After 15 days, the calvarial tissues were removed for histomorphometric analysis. Group 3 defects showed higher amounts of newly formed bone (37.89%) than the defects of all the other groups (P < 0.05). The amounts of new bone in defects of groups 1 and 4 were not significantly different from each other (24.00% and 24.75%, respectively), but were significantly different from the amounts in the other groups (P < 0.05). The amounts of new bone in the defects of groups 2 and 5 were not significantly different from each other (31.42% and 31.96%, respectively), but were significantly different from the amounts in the other groups (P < 0.05). Group 6 defects had 14.10% new bone formation, and this was significantly different from the amounts in the other groups (P < 0.05). It can be concluded that LLLI administered during surgery effectively accelerated healing of critical bone defects filled with pure rhBMP-2, achieving a better result than LLLI alone or the use of rhBMP-2 alone.