956 resultados para Radioactive pollution of water


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The water and sucrose effective diffusion coefficients behavior were studied in potato tubers immersed in aqueous sucrose solution, 50% (w/,A), at 27 degreesC. Water and sucrose concentration profiles were measured as function of the position for 3, 6 and 12 h of immersion. These were adjusted to a mathematical model for three components that take into account the bulk flow in a shrinking tissue and the concentration dependence of the diffusion coefficients.The binary effective coefficients were an order of magnitude lower than those for pure solutions of sucrose. These coefficients show an unusual concentration dependence. Analysis of these coefficients as functions of the concentration and position demonstrates that, cellular tissue promotes high resistance to diffusion in the tuber and also the elastic contraction of material influences the species diffusion. (C) 2003 Elsevier B.V. Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report here the first direct measurements of changes in protein hydration triggered by a functional binding. This task is achieved by weighing hemoglobin (Hb) and myoglobin films exposed to an atmosphere of 98%, relative humidity during oxygenation. The binding of the first oxygen molecules to Hb tetramer triggers a change in protein conformation, which increases binding affinity to the remaining empty sites giving rise to the appearance of cooperative phenomena. Although crystallographic data have evidenced that this structural change increases the protein water-accessible surface area, isobaric osmotic stress experiments in aqueous cosolutions have shown that water binding is linked to Hb oxygenation. Now we show that the differential hydration between fully oxygenated and fully deoxygenated states of these proteins, determined by weighing protein films with a quartz crystal microbalance, agree with the ones determined by osmotic stress in aqueous cosolutions, from the linkage between protein oxygen affinity and water activity. The agreements prove that the changes in water activity brought about by adding osmolytes to the buffer solution shift biochemical equilibrium in proportion to the number of water molecules associated with the reaction. The concomitant kinetics of oxygen and of water binding to Hb have been also determined. The data show that the binding of water molecules to the extra protein surface exposed on the transition from the low-affinity T to the high-affinity R conformations of hemoglobin is the rate-limiting step of Hb cooperative reaction. This evidences that water binding is a crucial step on the allosteric mechanism regulating cooperative interactions, and suggests the possibility that environmental water activity might be engaged in the kinetic control of some important reactions in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water intake was studied in albino rats with lesions in the lateral preoptic area, in the subfornical organ, and in both the lateral preoptic area and the subfornical organ. Drinking was induced by cellular dehydration, hypovolemia, hypotension (isoproterenol or caval ligation), and water deprivation. The animals with lesions in both areas showed a significant reduction in their water intake in response to cellular dehydration. Drinking due to extracellular dehydration was reduced in the animals that received only subfornical organ lesions, and was reduced even further in the animals with both areas ablated. The lesions in the subfornical organ were sufficient to reduce the thirst induced by caval ligation. The lesions in both areas inhibit water intake induced by caval ligation. Water intake induced by deprivation was reduced when both areas were destroyed. These findings demonstrate that both the lateral preoptic area and the subfornical organ are necessary for normal drinking in response to cellular dehydration, hypovolemia, and hypotension. There is further evidence that the lateral preoptic area and subfornical organ interact in the control of water intake induced by a variety of thirst challenges.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Water intake induced by injection of 0.2 M-NaCl into the lateral preoptic area was increased by the injection of angiotensin II into the subfornical organ of rats. The injection of hypertonic saline solution into the subfornical organ increased water intake. However, the increase was lower than when the solution was injected into the lateral preoptic area. The injection of 4 μg angiotensin II into the lateral preoptic area further augmented this effect. 2. Injection of angiotensin II into the subfornical organ caused a rise in blood pressure which preceded the thirst-inducing effect. The injection of 0.2 M NaCl into the subfornical organ caused no changes in blood pressure, whereas the injection of angiotensin II into the lateral preoptic area caused some increase. 3. Dehydration of the lateral preoptic area by means of 0.2 M NaCl in combination with intravenous infusion of angiotensin II caused a summation of effects in terms of the water intake, without changing cardiovascular alterations induced by the infusion of angiotensin II. A summation of effects in the water intake, but not in blood pressure, was also observed when 0.5 M NaCl was infused intravenously in combination with the injection of angiotensin II into the subfornical organ and into the lateral preoptic area. 4. The results indicate that there are interactions between the subfornical organ and lateral preoptic area in the regulation of cardiovascular and thirst mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In an attempt to estimate the soil-water transit time using the variation in 18O values, a statistical model was used. This model is based on linear regression analysis applied to the values observed for soil water and rain water. The time obtained from these correlations represents the mean time necessary for the water to run from one collecting point to the next.-from Authors

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of water stress induced by application of polyethylene glycol 6000 during seed germination and seedling growth of Oryza sativa L. cv. IAC 165 was analysed. The seed germination was inhibited by the decrease in the water potential of the medium, the inhibition being greater under white light than under continuous darkness. When the seedling was submitted to water stress (-0.51 MPa) white light inhibited growth of root, coleoptile-and leaf, while under no stress conditions white light caused increase in growth of root and leaf and only inhibition of coleoptile growth. © 1990 Kluwer Academic Publishers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AM1 calculations were performed for the absorption of H2O and CO2 molecules on the surface of model ZnO crystals. The absorption of isolated molecules of each species and the co-absorption of both compounds simultaneously were considered. It was found that the absorption of H2O near a site where CO; is already absorbed favors the process of sintering, in agreement with the experimental findings. This is explained by the formation of Zn(OH)CO3H bound to the surface, a more mobile species than the ZnO unit itself. The roundening of the grains observed in atmospheres containing dry CO2 but suppressed when H2O is present, is also explained by these calculations. After absorption of CO2, the rupture of one bond - so that diffusion of the ZnCO3 species on the surface is allowed - requires much less energy than the breaking of two bonds, necessary for ZnO migration. These facts explain why the speed of surface transport does not decrease in CO2 atmospheres while sintering is indeed slowed down. © 1994.