913 resultados para Radial diffuser
Resumo:
This paper reports the structural behavior and thermodynamics of the complexation of siRNA with poly(amidoamine) (PAMAM) dendrimers of generation 3 (G3) and 4 (G4) through fully atomistic molecular dynamics (MD) simulations accompanied by free energy calculations and inherent structure determination. We have also done simulation with one siRNA and two dendrimers (2 x G3 or 2xG4) to get the microscopic picture of various binding modes. Our simulation results reveal the formation of stable siRNA-dendrimer complex over nanosecond time scale. With the increase in dendrimcr generation, the charge ratio increases and hence the binding energy between siRNA and dendrimer also increases in accordance with available experimental measurements. Calculated radial distribution functions of amines groups of various subgenerations in a given generation of dendrimer and phosphate in backbone of siRNA reveals that one dendrimer of generation 4 shows better binding with siRNA almost wrapping the dendrimer when compared to the binding with lower generation dendrimer like G3. In contrast, two dendrimers of generation 4 show binding without siRNA wrapping the den-rimer because of repulsion between two dendrimers. The counterion distribution around the complex and the water molecules in the hydration shell of siRNA give microscopic picture of the binding dynamics. We see a clear correlation between water. counterions motions and the complexation i.e. the water molecules and counterions which condensed around siRNA are moved away from the siRNA backbone when dendrimer start binding to the siRNA back hone. As siRNA wraps/bind to the dendrimer counterions originally condensed onto siRNA (Na-1) and dendrimer (Cl-) get released. We give a quantitative estimate of the entropy of counterions and show that there is gain in entropy due to counterions release during the complexation. Furthermore, the free energy of complexation of IG3 and IG4 at two different salt concentrations shows that increase in salt concentration leads to the weakening of the binding affinity of siRNA and dendrimer.
Resumo:
We propose a physical mechanism to explain the origin of the intense burst of massive-star formation seen in colliding/merging, gas-rich, field spiral galaxies. We explicitly take account of the different parameters for the two main mass components, H-2 and H I, of the interstellar medium within a galaxy and follow their consequent different evolution during a collision between two galaxies. We also note that, in a typical spiral galaxy-like our galaxy, the Giant Molecular Clouds (GMCs) are in a near-virial equilibrium and form the current sites of massive-star formation, but have a low star formation rate. We show that this star formation rate is increased following a collision between galaxies. During a typical collision between two field spiral galaxies, the H I clouds from the two galaxies undergo collisions at a relative velocity of approximately 300 km s-1. However, the GMCs, with their smaller volume filling factor, do not collide. The collisions among the H I clouds from the two galaxies lead to the formation of a hot, ionized, high-pressure remnant gas. The over-pressure due to this hot gas causes a radiative shock compression of the outer layers of a preexisting GMC in the overlapping wedge region. This makes these layers gravitationally unstable, thus triggering a burst of massive-star formation in the initially barely stable GMCs.The resulting value of the typical IR luminosity from the young, massive stars from a pair of colliding galaxies is estimated to be approximately 2 x 10(11) L., in agreement with the observed values. In our model, the massive-star formation occurs in situ in the overlapping regions of a pair of colliding galaxies. We can thus explain the origin of enhanced star formation over an extended, central area approximately several kiloparsecs in size, as seen in typical colliding galaxies, and also the origin of starbursts in extranuclear regions of disk overlap as seen in Arp 299 (NGC 3690/IC 694) and in Arp 244 (NGC 4038/39). Whether the IR emission from the central region or that from the surrounding extranuclear galactic disk dominates depends on the geometry and the epoch of the collision and on the initial radial gas distribution in the two galaxies. In general, the central starburst would be stronger than that in the disks, due to the higher preexisting gas densities in the central region. The burst of star formation is expected to last over a galactic gas disk crossing time approximately 4 x 10(7) yr. We can also explain the simultaneous existence of nearly normal CO galaxy luminosities and shocked H-2 gas, as seen in colliding field galaxies.This is a minimal model, in that the only necessary condition for it to work is that there should be a sufficient overlap between the spatial gas distributions of the colliding galaxy pair.
Resumo:
The radial current density distribution on the cathode longitudinal surface of magnetoplasmadynamic arcjets for axisymmetric geometries has been obtained by simultaneous solution of the electromagnetic equations for a given uniform gas dynamic field. The problem formulation permits a parametric study of the effects of the Hall parameter and the magnetic Reynolds number. The solution for the current density distribution displays current concentrations at two locations, that is, at the upstream and downstream ends of the cathode. This result is in conformity with known experimental data. The parameters responsible for these current concentrations are identified. It is shown that the effect of the magnetic Reynolds number on the current density distribution is different depending on whether or not the Hall effect is included. This result is also found to be consistent with experimental data.
Resumo:
Molecular dynamics calculations on methane sorbed in NaY (Si/Al = 3.0) employing realistic methane-methane and methane-zeolite intermolecular potential functions at different temperatures (50, 150, 220, and 300 K) and concentrations (2, 4, 6, and 8 molecules/cage) are reported. The thermodynamic results are in agreement with the available experimental data. Guest-guest and guest-host radial distribution functions (rdfs), energy distribution functions, distribution of cage occupancy, center-of-cage-center-of-mass (coc-com) rdfs, velocity autocorrelation functions for com and angular motion and the Fourier transformed power spectra, and diffusion coefficients are presented as a function of temperature and concentration. At 50 K, methane is localized near the adsorption site. Site-site migration and essentially free rotational motion are observed at 150 K. Molecules preferentially occupy the region near the inner surface of the alpha-cage. The vibrational frequencies for the com of methane shift toward higher values with decreasing temperature and increasing adsorbate concentration. The observed frequencies for com motion are 36, 53, and 85 cm-1 and for rotational motion at 50 K, 95 and 150 cm-1 in agreement with neutron scattering data. The diffusion coefficients show a type I behavior as a function of loading in agreement with NMR measurements. Cage-to-cage diffusion is found to be always mediated by the surface.
Resumo:
In rapid parallel magnetic resonance imaging, the problem of image reconstruction is challenging. Here, a novel image reconstruction technique for data acquired along any general trajectory in neural network framework, called ``Composite Reconstruction And Unaliasing using Neural Networks'' (CRAUNN), is proposed. CRAUNN is based on the observation that the nature of aliasing remains unchanged whether the undersampled acquisition contains only low frequencies or includes high frequencies too. Here, the transformation needed to reconstruct the alias-free image from the aliased coil images is learnt, using acquisitions consisting of densely sampled low frequencies. Neural networks are made use of as machine learning tools to learn the transformation, in order to obtain the desired alias-free image for actual acquisitions containing sparsely sampled low as well as high frequencies. CRAUNN operates in the image domain and does not require explicit coil sensitivity estimation. It is also independent of the sampling trajectory used, and could be applied to arbitrary trajectories as well. As a pilot trial, the technique is first applied to Cartesian trajectory-sampled data. Experiments performed using radial and spiral trajectories on real and synthetic data, illustrate the performance of the method. The reconstruction errors depend on the acceleration factor as well as the sampling trajectory. It is found that higher acceleration factors can be obtained when radial trajectories are used. Comparisons against existing techniques are presented. CRAUNN has been found to perform on par with the state-of-the-art techniques. Acceleration factors of up to 4, 6 and 4 are achieved in Cartesian, radial and spiral cases, respectively. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Seepage through sand bed channels in a downward direction (suction) reduces the stability of particles and initiates the sand movement. Incipient motion of sand bed channel with seepage cannot be designed by using the conventional approach. Metamodeling techniques, which employ a non-linear pattern analysis between input and output parameters and solely based on the experimental observations, can be used to model such phenomena. Traditional approach to find non-dimensional parameters has not been used in the present work. Parameters, which can influence the incipient motion with seepage, have been identified and non-dimensionalized in the present work. Non-dimensional stream power concept has been used to describe the process. By using these non-dimensional parameters; present work describes a radial basis function (RBF) metamodel for prediction of incipient motion condition affected by seepage. The coefficient of determination, R-2 of the model is 0.99. Thus, it can be said that model predicts the phenomena very well. With the help of the metamodel, design curves have been presented for designing the sand bed channel when it is affected by seepage. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The radius of an elastic-plastic boundary was measured by the strain gage method around the cold-worked region in L72-aluminum alloy. The relative radial expansion was varied from 2.5 to 6.5 percent during the cold-working process using mandrel and split sleeve. The existing theoretical studies in this area are reviewed. The experimental results are compared with existing experimental data of various investigators and with various theoretical formulations. A model is developed to predict the radius of elastic-plastic boundary, and the model is assessed by comparing with the present experiments.
Resumo:
Consideration is given to a 25-foot long Q-band (8 mm) confocal, zoned dielectric lens beam waveguide. Numerical expressions for the axial and radial fields are presented. The experimental set-up consisted of uniformly spaced zoned dielectric lenses, a transmitting horn and a receiving horn. It was found that: (1) the wave beam is reiterated when confocal, zoned dielectric lenses act as phase transformers in place of smooth surfaced transformers in beam waveguides; (2) the axial field is oscillatory near the source and the oscillation persists for about 25 cm from the source; (3) the oscillation disappears after one lens is used; (4) higher order modes with higher attenuation rates die out faster than fundamental modes; (5) phase transformers do not alter beam modes; (6) without any lens the beam cross-section broadens significantly in the Z-direction; (7) with one lens the beam exhibits the reiteration phenomenon; and (8) inserting a second lens on the axial and cross-sectional field distribution shows further the reiteration principle.
Resumo:
The structures of a PbO.SiO2 glass and melt have been studied using molecular dynamics simulation employing Born-Mayer-Huggins pair potentials. Various pair distribution functions are presented and discussed. Pb-Pb correlations persist in the melt, in agreement with experimental observations. The calculated and experimental radial distribution functions are compared.
Resumo:
According to the most prevalent view, there are 3-4 fixed "slots" in visual working memory for temporary storage. Recently this view has been challenged with a theory of dynamic resources which are restricted in their totality but can be freely allocated. The aim of this study is to clarify which one of the theories better describes the performance in visual working memory tasks with contour shapes. Thus in this study, the interest is in both the number of recalled stimuli and the precision of the memory representations. Stimuli in the experiments were radial frequency patterns, which were constructed by sinusoidally modulating the radius of a circle. Five observers participated in the experiment and it consisted of two different tasks. In the delayed discrimination task the number of recalled stimuli was measured with 2-interval forced choice task. Observer was shown serially two displays with 1, 5 s ISI (inter stimulus interval). Displays contained 1-6 patterns and they differed from each other with changed amplitude in one pattern. The participant s task was to report whether the changed pattern had higher amplitude in the first or in the second interval. The amount of amplitude change was defined with QUEST-procedure and the 75 % discrimination threshold was measured in the task. In the recall task the precision of the memory representations was measured with subjective adjustment method. First, observer was shown 1-6 patterns and after 1, 5 s ISI one location of the previously shown pattern was cued. Observer s task was to adjust amplitude of a probe pattern to match the amplitude of the pattern in working memory. In the delayed discrimination task the performance of all observes declined smoothly when the number of presented patterns was increased. The result supports the resource theory of working memory as there was no sudden fall in the performance. The amplitude threshold for one item was 0.01 0.05 and as the number of items increased from 1 to 6 there was a 4 15 -fold linear increase in the amplitude threshold (0.14 0.29). In the recall adjustment task the precision of four observers performance declined smoothly as the number of presented patterns was increased. The result also supports the resource theory. The standard deviation for one item was 0.03 0.05 and as the number of items increased from 1 to 6 there was a 2 3 -fold linear increase in the amplitude threshold (0.06 0.11). These findings show that the performance in a visual working memory task is described better according to the theory of freely allocated resources and not to the traditional slot-model. In addition, the allocation of the resources depends on the properties of the individual observer and the visual working memory task.
Resumo:
Context. Turbulent fluxes of angular momentum and heat due to rotationally affected convection play a key role in determining differential rotation of stars. Aims. We compute turbulent angular momentum and heat transport as functions of the rotation rate from stratified convection. We compare results from spherical and Cartesian models in the same parameter regime in order to study whether restricted geometry introduces artefacts into the results. Methods. We employ direct numerical simulations of turbulent convection in spherical and Cartesian geometries. In order to alleviate the computational cost in the spherical runs and to reach as high spatial resolution as possible, we model only parts of the latitude and longitude. The rotational influence, measured by the Coriolis number or inverse Rossby number, is varied from zero to roughly seven, which is the regime that is likely to be realised in the solar convection zone. Cartesian simulations are performed in overlapping parameter regimes. Results. For slow rotation we find that the radial and latitudinal turbulent angular momentum fluxes are directed inward and equatorward, respectively. In the rapid rotation regime the radial flux changes sign in accordance with earlier numerical results, but in contradiction with theory. The latitudinal flux remains mostly equatorward and develops a maximum close to the equator. In Cartesian simulations this peak can be explained by the strong 'banana cells'. Their effect in the spherical case does not appear to be as large. The latitudinal heat flux is mostly equatorward for slow rotation but changes sign for rapid rotation. Longitudinal heat flux is always in the retrograde direction. The rotation profiles vary from anti-solar (slow equator) for slow and intermediate rotation to solar-like (fast equator) for rapid rotation. The solar-like profiles are dominated by the Taylor-Proudman balance.
Resumo:
During their main sequence evolution, massive stars can develop convective regions very close to their surface. These regions are caused by an opacity peak associated with iron ionization. Cantiello et al. (2009) found a possible connection between the presence of sub-photospheric convective motions and small scale stochastic velocities in the photosphere of early-type stars. This supports a physical mechanism where microturbulence is caused by waves that are triggered by subsurface convection zones. They further suggest that clumping in the inner parts of the winds of OB stars could be related to subsurface convection, and that the convective layers may also be responsible for stochastic excitation of non-radial pulsations. Furthermore, magnetic fields produced in the iron convection zone could appear at the surface of such massive stars. Therefore subsurface convection could be responsible for the occurrence of observable phenomena such as line profile variability and discrete absorption components. These phenomena have been observed for decades, but still evade a clear theoretical explanation. Here we present preliminary results from 3D MHD simulations of such subsurface convection.
Resumo:
A block of high-purity copper was indented by a 120-degrees diamond-tipped cone. Strain gauges were placed on the surface to measure the radial strains at different surface locations, during loading as well as unloading. The competence of three stress fields proposed for elastic-plastic indentation is assessed by comparing the predicted surface radial strains with those experimentally observed.
Resumo:
Prediction of lag damping is difficult owing to the delicate balance of drag, induced drag and Coriolis forces in the in‐plane direction. Moreover, induced drag” is sensitive to dynamic wake, bath shed and trailing components, and thus its prediction requires adequate unsteady‐wake representation. Accordingly, rigid‐blade flap‐lag equations are coupled with a three‐dimensional finite‐state wake model; three isolatcd rotor canfigurations with three, four and five blades are treated over a range of thrust levels, tack numbers, lag frequencies and advance ratios. The investigation includes convergence characteristics of damping with respect to the number of radial shape functions and harmonics of the wake model for multiblade modes of low frequency (< 1/ rev.) to high frequency (> 1/rev.). Predicted flap and lag damping levels are then compared with similar predictions with 1) rigid wake (no unsteady induced now), 2) Loewy lift deficiency and 3) dynamic inflow. The coverage also includes correlations with the measured lag regressive‐mode damping in hover and forward flight and comparisons with similar correlations with dynamic inflow. Lag‐damping predictions with the dynamic wake model are consistently higher than the predictions with the dynamic inflow model; even for the low frequency lag regressive mode, the number of wake harmonics should at least be equal to twice the number of blades.
Resumo:
In an earlier study, we reported on the excitation of large-scale vortices in Cartesian hydrodynamical convection models subject to rapid enough rotation. In that study, the conditions for the onset of the instability were investigated in terms of the Reynolds (Re) and Coriolis (Co) numbers in models located at the stellar North pole. In this study, we extend our investigation to varying domain sizes, increasing stratification, and place the box at different latitudes. The effect of the increasing box size is to increase the sizes of the generated structures, so that the principal vortex always fills roughly half of the computational domain. The instability becomes stronger in the sense that the temperature anomaly and change in the radial velocity are observed to be enhanced. The model with the smallest box size is found to be stable against the instability, suggesting that a sufficient scale separation between the convective eddies and the scale of the domain is required for the instability to work. The instability can be seen upto the colatitude of 30 degrees, above which value the flow becomes dominated by other types of mean flows. The instability can also be seen in a model with larger stratification. Unlike the weakly stratified cases, the temperature anomaly caused by the vortex structures is seen to depend on depth.