965 resultados para RNA, Ribosomal -- genetics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To a reasonable approximation, a secondary structures of RNA is determined by Watson-Crick pairing without pseudo-knots in such a way as to minimise the number of unpaired bases: We show that this minimal number is determined by the maximal conjugacy-invariant pseudo-norm on the free group on two generators subject to bounds on the generators. This allows us to construct lower bounds on the minimal number of unpaired bases by constructing conjugacy invariant pseudo-norms. We show that one such construction, based on isometric actions on metric spaces, gives a sharp lower bound. A major goal here is to formulate a purely mathematical question, based on considering orthogonal representations, which we believe is of some interest independent of its biological roots.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Groundnut bud necrosis virus belongs to the genus Tospovirus, infects a wide range of crop plants and causes severe losses. To understand the role of the nucleocapsid protein in the viral life cycle, the protein was overexpressed in E. coli and purified by Ni-NTA chromatography. The purified N protein was well folded and was predominantly alpha-helical. Deletion analysis revealed that the C-terminal unfolded region of the N protein was involved in RNA binding. Furthermore, the N protein could be phosphorylated in vitro by Nicotiana benthamiana plant sap and by purified recombinant kinases such as protein kinase CK2 and calcium-dependent protein kinase. This is the first report of phoshphorylation of a nucleocapsid protein in the family Bunyaviridae. The possible implications of the present findings for the viral life cycle are discussed.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Because of its essential nature, each step of transcription, viz., initiation, elongation, and termination, is subjected to elaborate regulation. A number of transcription factors modulate the rates of transcription at these different steps, and several inhibitors shut down the process. Many modulators, including small molecules and proteinaceous inhibitors, bind the RNA polymerase (RNAP) secondary channel to control transcription. We describe here the first small protein inhibitor of transcription in Mycobacterium tuberculosis. Rv3788 is a homolog of the Gre factors that binds near the secondary channel of RNAP to inhibit transcription. The factor also affected the action of guanosine pentaphosphate (pppGpp) on transcription and abrogated Gre action, indicating its function in the modulation of the catalytic center of RNAP. Although it has a Gre factor-like domain organization with the conserved acidic residues in the N terminus and retains interaction with RNAP, the factor did not show any transcript cleavage stimulatory activity. Unlike Rv3788, another Gre homolog from Mycobacterium smegmatis, MSMEG_6292 did not exhibit transcription-inhibitory activities, hinting at the importance of the former in influencing the lifestyle of M. tuberculosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an effort to design efficient platform for siRNA delivery, we combine all atom classical and quantum simulations to study the binding of small interfering RNA (siRNA) by pristine single wall carbon nanotube (SWCNT). Our results show that siRNA strongly binds to SWCNT surface via unzipping its base-pairs and the propensity of unzipping increases with the increase in the diameter of the SWCNTs. The unzipping and subsequent wrapping events are initiated and driven by van der Waals interactions between the aromatic rings of siRNA nucleobases and the SWCNT surface. However, molecular dynamics (MD) simulations of double strand DNA (dsDNA) of the same sequence show that the dsDNA undergoes much less unzipping and wrapping on the SWCNT in the simulation time scale of 70 ns. This interesting difference is due to smaller interaction energy of thymidine of dsDNA with the SWCNT compared to that of uridine of siRNA, as calculated by dispersion corrected density functional theory (DFT) methods. After the optimal binding of siRNA to SWCNT, the complex is very stable which serves as one of the major mechanisms of siRNA delivery for biomedical applications. Since siRNA has to undergo unwinding process with the effect of RNA-induced silencing complex, our proposed delivery mechanism by SWCNT possesses potential advantages in achieving RNA interference. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3682780]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to limited available therapeutic options, developing new lead compounds against hepatitis C virus is an urgent need. Human La protein stimulates hepatitis C virus translation through interaction with the hepatitis C viral RNA. A cyclic peptide mimicking the beta-turn of the human La protein that interacts with the viral RNA was synthesized. It inhibits hepatitis C viral RNA translation significantly better than the corresponding linear peptide at longer post-treatment times. The cyclic peptide also inhibited replication as measured by replicon RNA levels using real time RT-PCR. The cyclic peptide emerges as a promising lead compound against hepatitis C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The accuracy of pairing of the anticodon of the initiator tRNA (tRNA(fMet)) and the initiation codon of an mRNA, in the ribosomal P-site, is crucial for determining the translational reading frame. However, a direct role of any ribosomal element(s) in scrutinizing this pairing is unknown. The P-site elements, m(2)G966 (methylated by RsmD), m(5)C967 (methylated by RsmB) and the C-terminal tail of the protein S9 lie in the vicinity of tRNA(fMet). We investigated the role of these elements in initiation from various codons, namely, AUG, GUG, UUG, CUG, AUA, AUU, AUC and ACG with tRNA(CAU)(fmet) (tRNA(fMet) with CAU anticodon); CAC and CAU with tRNA(GUG)(fme); UAG with tRNA(GAU)(fMet) using in vivo and computational methods. Although RsmB deficiency did not impact initiation from most codons, RsmD deficiency increased initiation from AUA, CAC and CAU (2- to 3.6-fold). Deletion of the S9 C-terminal tail resulted in poorer initiation from UUG, GUG and CUG, but in increased initiation from CAC, CAU and UAC codons (up to 4-fold). Also, the S9 tail suppressed initiation with tRNA(CAU)(fMet)lacking the 3GC base pairs in the anticodon stem. These observations suggest distinctive roles of 966/967 methylations and the S9 tail in initiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human La protein has been implicated in facilitating the internal initiation of translation as well as replication of hepatitis C virus (HCV) RNA. Previously, we demonstrated that La interacts with the HCV internal ribosome entry site (IRES) around the GCAC motif near the initiator AUG within stem-loop IV by its RNA recognition motif (RRM) (residues 112 to 184) and influences HCV translation. In this study, we have deciphered the role of this interaction in HCV replication in a hepatocellular carcinoma cell culture system. We incorporated mutation of the GCAC motif in an HCV monocistronic subgenomic replicon and a pJFH1 construct which altered the binding of La and checked HCV RNA replication by reverse transcriptase PCR (RT-PCR). The mutation drastically affected HCV replication. Furthermore, to address whether the decrease in replication is a consequence of translation inhibition or not, we incorporated the same mutation into a bicistronic replicon and observed a substantial decrease in HCV RNA levels. Interestingly, La overexpression rescued this inhibition of replication. More importantly, we observed that the mutation reduced the association between La and NS5B. The effect of the GCAC mutation on the translation-to-replication switch, which is regulated by the interplay between NS3 and La, was further investigated. Additionally, our analyses of point mutations in the GCAC motif revealed distinct roles of each nucleotide in HCV replication and translation. Finally, we showed that a specific interaction of the GCAC motif with human La protein is crucial for linking 5' and 3' ends of the HCV genome. Taken together, our results demonstrate the mechanism of regulation of HCV replication by interaction of the cis-acting element GCAC within the HCV IRES with human La protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ribosomal P-site hosts the peptidyl-tRNAs during translation elongation. Which P-site elements support these tRNA species to maintain codon-anticodon interactions has remained unclear. We investigated the effects of P-site features of methylations of G966, C967, and the conserved C-terminal tail sequence of Ser, Lys, and Arg (SKR) of the S9 ribosomal protein in maintenance of the translational reading frame of an mRNA. We generated Escherichia coli strains deleted for the SKR sequence in S9 ribosomal protein, RsmB (which methylates C967), and RsmD (which methylates G966) and used them to translate LacZ from its +1 and -1 out-of-frame constructs. We show that the S9 SKR tail prevents both the +1 and -1 frameshifts and plays a general role in holding the P-site tRNA/peptidyl-tRNA in place. In contrast, the G966 and C967 methylations did not make a direct contribution to the maintenance of the translational frame of an mRNA. However, deletion of rsmB in the S9 Delta 3 background caused significantly increased -1 frameshifting at 37 degrees C. Interestingly, the effects of the deficiency of C967 methylation were annulled when the E. coli strain was grown at 30 degrees C, supporting its context-dependent role.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The widely conserved omega subunit encoded by rpoZ is the smallest subunit of Escherichia coli RNA polymerase (RNAP) but is dispensable for bacterial growth. Function of omega is known to be substituted by GroEL in omega-null strain, which thus does not exhibit a discernable phenotype. In this work, we report isolation of omega variants whose expression in vivo leads to a dominant lethal phenotype. Studies show that in contrast to omega, which is largely unstructured, omega mutants display substantial acquisition of secondary structure. By detailed study with one of the mutants, omega(6) bearing N60D substitution, the mechanism of lethality has been deciphered. Biochemical analysis reveals that omega(6) binds to beta ` subunit in vitro with greater affinity than that of omega. The reconstituted RNAP holoenzyme in the presence of omega(6) in vitro is defective in transcription initiation. Formation of a faulty RNAP in the presence of mutant omega results in death of the cell. Furthermore, lethality of omega(6) is relieved in cells expressing the rpoC2112 allele encoding beta ` (2112), a variant beta ` bearing Y457S substitution, immediately adjacent to the beta ` catalytic center. Our results suggest that the enhanced omega(6)-beta ` interaction may perturb the plasticity of the RNAP active center, implicating a role for omega and its flexible state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flaviviral RNA-dependent RNA polymerases (RdRps) initiate replication of the single-stranded RNA genome in the absence of a primer. The template sequence 5'-CU-3' at the 3'-end of the flaviviral genome is highly conserved. Surprisingly, flaviviral RdRps require high concentrations of the second incoming nucleotide GTP to catalyze de novo template-dependent RNA synthesis. We show that GTP stimulates de novo RNA synthesis by RdRp from Japanese encephalitis virus (jRdRp) also. Crystal structures of jRdRp complexed with GTP and ATP provide a basis for specific recognition of GTP. Comparison of the jRdRp(GTP) structure with other viral RdRp-GTP structures shows that GTP binds jRdRp in a novel conformation. Apo-jRdRp structure suggests that the conserved motif F of jRdRp occupies multiple conformations in absence of GTP. Motif F becomes ordered on GTP binding and occludes the nucleotide triphosphate entry tunnel. Mutational analysis of key residues that interact with GTP evinces that the jRdRp(GTP) structure represents a novel pre-initiation state. Also, binding studies show that GTP binding reduces affinity of RdRp for RNA, but the presence of the catalytic Mn2+ ion abolishes this inhibition. Collectively, these observations suggest that the observed pre-initiation state may serve as a check-point to prevent erroneous template-independent RNA synthesis by jRdRp during initiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human La protein is known to be an essential host factor for translation and replication of hepatitis C virus (HCV) RNA. Previously, we have demonstrated that residues responsible for interaction of human La protein with the HCV internal ribosomal entry site (IRES) around the initiator AUG within stem-loop IV form a beta-turn in the RNA recognition motif (RRM) structure. In this study, sequence alignment and mutagenesis suggest that the HCV RNA-interacting beta-turn is conserved only in humans and chimpanzees, the species primarily known to be infected by HCV. A 7-mer peptide corresponding to the HCV RNA-interacting region of human La inhibits HCV translation, whereas another peptide corresponding to the mouse La sequence was unable to do so. Furthermore, IRES-mediated translation was found to be significantly high in the presence of recombinant human La protein in vitro in rabbit reticulocyte lysate. We observed enhanced replication with HCV subgenomic and full-length replicons upon overexpression of either human La protein or a chimeric mouse La protein harboring a human La beta-turn sequence in mouse cells. Taken together, our results raise the possibility of creating an immunocompetent HCV mouse model using human-specific cell entry factors and a humanized form of La protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Object. Insulin-like growth factor binding proteins (IGEBPs) have been implicated in the pathogenesis of glioma. In a previous study the authors demonstrated that IGFBP-3 is a novel glioblastoma biomarker associated with poor survival. Since signal transducer and activator of transcription 1 (STAT-1) has been shown to be regulated by IGFBP-3 during chondrogenesis and is a prosurvival and radioresistant molecule in different tumors, the aim in the present study was to explore the functional significance of IGFBP-3 in malignant glioma cells, to determine if STAT-1 is indeed regulated by IGFBP-3, and to study the potential of STAT-1 as a biomarker in glioblastoma. Methods. The functional significance of IGFBP-3 was investigated using the short hairpin (sh)RNA gene knockdown approach on U251MG cells. STAT-1 regulation by IGFBP-3 was tested on U251MG and U87MG cells by shRNA gene knockdown and exogenous treatment with recombinant IGFBP-3 protein. Subsequently, the expression of STAT-1 was analyzed with real-time reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC) in glioblastoma and control brain tissues. Survival analyses were done on a uniformly treated prospective cohort of adults with newly diagnosed glioblastoma (136 patients) using Kaplan-Meier and Cox regression models. Results. IGFBP-3 knockdown significantly impaired proliferation, motility, migration, and invasive capacity of U251MG cells in vitro (p < 0.005). Exogenous overexpression of IGFBP-3 in U251MG and U87MG cells demonstrated STAT-1 regulation. The mean transcript levels (by real-time RT-PCR) and the mean labeling index of STAT-1 (by IHC) were significantly higher in glioblastoma than in control brain tissues (p = 0.0239 and p < 0.001, respectively). Multivariate survival analysis revealed that STAT-1 protein expression (HR 1.015, p = 0.033, 95% CI 1.001-1.029) along with patient age (HR 1.025, p = 0.005, 95% CI 1.008-1.042) were significant predictors of shorter survival in patients with glioblastoma. Conclusions. IGFBP-3 influences tumor cell proliferation, migration, and invasion and regulates STAT-1 expression in malignant glioma cells. STAT-1 is overexpressed in human glioblastoma tissues and emerges as a novel prognostic biomarker.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A convenient protocol is developed for the synthesis of 3 `-N-(fluorenylmethoxycarbonyl)-amino]-5 `-carboxymethyl derivatives of all four natural ribonucleosides from cheap chiral pool compound glucose. Synthesis of fully amide-linked RNA analogues of small oligonucleotides containing, for the first time, all four nucleoside amino acids using standard solid phase Fmoc-chemistry is described. (C) 2014 Elsevier Ltd. All rights reserved.