958 resultados para RIBOSOMAL-RNA GENE


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Résumé Une caractéristique des cellules eucaryotes est le confinement du matériel génétique (ADN/DNA) dans le noyau. Pour décoder cette information, un ARN messager (mRNA) est d'abord transcrit sous forme d'un ARN prémessager (pré-mRNA). Ce-dernier doit subir plusieurs étapes de maturation pour aboutir à une particule ribonucléoprotéique (mRNP) qui sera exportée vers le cytoplasme et traduite en protéine. La protéine de levure Mex67p et son homologue humain TAP sont des récepteurs d'export médiant la translocation du mRNP au travers des complexes du pore nucléaire (NPC). Mex67p/TAP ne se lient pas directement au mRNA, mais nécessitent la présence de protéines adaptatrices, telles que Yra1p et son homologue humain REF1. Afin d'identifier de nouveaux facteurs impliqués dans l'export des mRNPs ou de nouvelles fonctions pour Yra1p, nous avons effectué un crible génétique avec un mutant thermosensible de Yra1p, GFP-yra 1 -8. Ce mutant présente un défaut d'export des mRNAs et une diminution des niveaux de transcrits du gène rapporteur LacZ ainsi que de certains transcrits endogènes. Nous avons trouvé que la perte de Mlp2p, ou d'une protéine hautement similaire, Mlp1p, restaure la croissance du mutant GFP-yra1-8 à température restrictive. Mlp1p et Mlp2p sont des protéines nucléaires, dont l'homologue humain est TPR. Les Mlp (myosin¬like proteins) ainsi que TPR forment des structures filamenteuses ancrées aux NPC. Bien que la fonction des Mlp ne soit pas clairement définie, un rôle dans la biogenèse et la surveillance des mRNPs a été récemment proposé. Notre étude montre que la perte des Mlp, non seulement restaure la croissance de GFP-yra1-8, mais augmente aussi les niveaux des transcrits LacZ et facilite leur apparition dans le cytoplasme. Des expériences d'immunoprécipitations de la chromatine révèlent que Mlp2p diminue le taux de synthèse du transcrit LacZ dans GFP-yra1-8. Des analyses du transcriptome montrent que Mlp2p réduit aussi les niveaux d'une population de transcrits endogènes dans le mutant. Finalement, des localisations in situ suggèrent que la transcription du rapporteur LacZ a lieu à la périphérie du noyau, à proximité des Mlp. Ainsi, les protéines Mlp pourraient préférentiellement diminuer la transcription de gènes exprimés à la périphérie nucléaire. Nous montrons aussi que Yra1p interagit génétiquement avec Nab2p une protéine liée au mRNA et impliquée dans son export, mais non avec d'autres protéines également impliquées dans l'export des mRNAs. Les résultats obtenus soutiennent un modèle où les protéines Yra1p et Nab2p sont nécessaires à l'arrimage des mRNPs sur la plate-forme des Mlp. Si ces signaux manquent ou sont défectueux, les mRNPs ne peuvent pas poursuivre leur trajet vers le canal central du NPC. Ce bloc induirait par la suite une diminution de la transcription d'une population de gènes potentiellement localisée à la périphérie nucléaire. Dans son ensemble, cette étude suggère que les protéines Mlp établissent un lien entre la transcription de certains mRNAs et leur export au travers du pore nucléaire. Summary A hallmark of the eukaryotic cell is the packaging of DNA in the nucleus. To decode the genetic information, a messenger RNA (mRNA) is first synthesized as a pre-mRNA molecule, which undergoes different maturation steps resulting in an mRNP (messenger RNA ribonucleoprotein), which can be actively transported to the cytoplasm and translated into a protein. Yeast Mex67p and its human homologue TAP are export receptors mediating mRNP translocation through the nuclear pore complex (NPC). The recruitment of Mex67p/TAP to mRNA is mediated by mRNA export adaptors of the evolutionarily conserved REF (RNA and Export Factor binding) family: yeast Yra1p and human REF1. To uncover new functions of Yra1p or new factors implicated in mRNA export, we performed a genetic screen with a themiosensitive (ts) yra1 mutant, GFP-yra1-8. This mutant exhibits mRNA export defects and a decrease in the levels of LacZ reporter and certain endogenous transcripts. We found that the loss of Mlp2p, or the related Mlp1p protein, substantially rescues the growth defect of the GFP-yra1 -8 mutant. Mlp1p and M1p2p are large non-essential proteins, homologous to human TPR, proposed to form intra-nuclear filamentous structures anchored at the NPC. Their role is not clearly defined, but they have been implicated in mRNP biogenesis and surveillance. Our study shows that loss of Mlp proteins not only restores growth of GFP-yra1-8, but also rescues LacZ mRNA levels and increases their appearance in the cytoplasm. Chromatin immunoprecipitation and pulse chase experiments indicate that Mlp2p down-regulates LacZ mRNA synthesis in GFP-yra1-8. DNA micro- array analyses reveal that Mlp2p also reduces the levels of a subset of cellular transcripts in the yra1 mutant strain. In situ localizations suggest that LacZ transcription occurs at the nuclear periphery, in close proximity to Mlp proteins. Thus, Mlp proteins may preferentially down-regulate genes expressed at the nuclear periphery. Finally, we show that Yra1p genetically interacts with the shuttling mRNA-binding protein Nab2p and that loss of Mlp proteins rescues the growth defect of yra1 and nab2, but not other mRNA export mutants. The data support a model in which Nab2p and Yra1p are required for rnRNP docking to the Mlp platform. Lack of these signals prevents mRNPs from crossing the Mlp gate. This block may then negatively feed-back on the transcription of a subset of genes, potentially located at the nuclear envelope. Overall, this study suggests that perinuclear Mlp proteins establish a link between mRNA transcription and export.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The single nucleotide polymorphism (SNP) rs2542151 within the gene locus region encoding protein tyrosine phosphatase non-receptor type 2 (PTPN2) has been associated with Crohn's disease (CD), ulcerative colitis (UC), type-I diabetes, and rheumatoid arthritis. We have previously shown that PTPN2 regulates mitogen-activated protein kinase (MAPK) signaling and cytokine secretion in human THP-1 monocytes and intestinal epithelial cells (IEC). Here, we studied whether intronic PTPN2 SNP rs1893217 regulates immune responses to the nucleotide-oligomerization domain 2 (NOD2) ligand, muramyl-dipeptide (MDP). MATERIALS AND METHODS: Genomic DNA samples from 343 CD and 663 non-IBD control patients (male and female) from a combined German, Swiss, and Polish cohort were genotyped for the presence of the PTPN2 SNPs, rs2542151, and rs1893217. PTPN2-variant rs1893217 was introduced into T(84) IEC or THP-1 cells using a lentiviral vector. RESULTS: We identified a novel association between the genetic variant, rs1893217, located in intron 7 of the PTPN2 gene and CD. Human THP-1 monocytes carrying this variant revealed increased MAPK activation as well as elevated mRNA expression of T-bet transcription factor and secretion of interferon-γ in response to the bacterial wall component, MDP. In contrast, secretion of interleukin-8 and tumor necrosis factor were reduced. In both, T(84) IEC and THP-1 monocytes, autophagosome formation was impaired. CONCLUSIONS: We identified a novel CD-associated PTPN2 variant that modulates innate immune responses to bacterial antigens. These findings not only provide key insights into the effects of a functional mutation on a clinically relevant gene, but also reveal how such a mutation could contribute to the onset of disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cells are subjected to dramatic changes of gene expression upon environmental changes. Stresscauses a general down-regulation of gene expression together with the induction of a set of stress-responsivegenes. The p38-related stress-activated protein kinase Hog1 is an important regulator of transcription uponosmostress in yeast. Genome-wide localization studies of RNA polymerase II (RNA Pol II) and Hog1 showed that stress induced major changes in RNA Pol II localization, with a shift toward stress-responsive genes relative to housekeeping genes. RNA Pol II relocalization required Hog1, which was also localized to stress-responsive loci. In addition to RNA Pol II-bound genes, Hog1 also localized to RNA polymerase III-bound genes, pointing to a wider role for Hog1 in transcriptional control than initially expected. Interestingly, an increasing association of Hog1 with stressresponsive genes was strongly correlated with chromatin remodeling and increased gene expression. Remarkably, MNase-Seq analysis showed that although chromatin structure was not significantly altered at a genome-wide level in response to stress, there was pronounced chromatin remodeling for those genes that displayed Hog1 association. Hog1 serves to bypass the general down-regulation of gene expression that occurs in response to osmostress, and does so both by targeting RNA Pol II machinery and by inducing chromatin remodeling at stressresponsive loci.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tocopherols (vitamin E) are lipophilic antioxidants that are synthesized by all plants and are particularly abundant in seeds. Two tocopherol-deficient mutant loci in Arabidopsis thaliana were used to examine the functions of tocopherols in seedlings: vitamin e1 (vte1), which accumulates the pathway intermediate 2,3-dimethyl-5-phytyl-1,4-benzoquinone (DMPBQ); and vte2, which lacks all tocopherols and pathway intermediates. Only vte2 displayed severe seedling growth defects, which corresponded with massively increased levels of the major classes of nonenzymatic lipid peroxidation products: hydroxy fatty acids, malondialdehyde, and phytoprostanes. In the absence of pathogens, the phytoalexin camalexin accumulated in vte2 seedlings to levels 100-fold higher than in wild-type or vte1 seedlings. Similarly, gene expression profiling in wild-type, vte1, and vte2 seedlings indicated that increased levels of nonenzymatic lipid peroxidation in vte2 corresponded to increased expression of many defense-related genes, which were not induced in vte1. Both biochemical and transcriptional analyses of vte2 seedlings indicate that nonenzymatic lipid peroxidation plays a significant role in modulating plant defense responses. Together, these results establish that tocopherols in wild-type plants or DMPBQ in vte1 plants limit nonenzymatic lipid peroxidation during germination and early seedling development, thereby preventing the inappropriate activation of transcriptional and biochemical defense responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe the effect of guanidinylation of the aminoglycoside moiety on acridine-neamine-containing ligands for the stem-loop structure located at the exon 10-5′-intron junction of Tau pre-mRNA, an important regulatory element of tau gene alternative splicing. On the basis of dynamic combinatorial chemistry experiments, ligands that combine guanidinoneamine and two different acridines were synthesized and their RNA-binding properties were compared with those of their amino precursors. Fluorescence titration experiments and UV-monitored melting curves revealed that guanidinylation has a positive effect both on the binding affinity and specificity of the ligands for the stemloop RNA, as well as on the stabilization of all RNA sequences evaluated, particularly some mutated sequences associated with the development of FTDP-17 tauopathy. However, this correlation between binding affinity and stabilization due to guanidinylation was only found in ligands containing a longer spacer between the acridine and guanidinoneamine moieties, since a shorter spacer produced the opposite effect (e.g. lower binding affinity and lower stabilization). Furthermore, spectroscopic studies suggest that ligand binding does not significantly change the overall RNA structure upon binding (circular dichroism) and that the acridine moiety might intercalate near the bulged region of the stem->loop structure (UV-Vis and NMR spectroscopy).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Strategies leading to the long-term suppression of inappropriate ocular angiogenesis are required to avoid the need for repetitive monthly injections for treatment of diseases of the eye, such as age-related macular degeneration (AMD). The present study aimed to develop a strategy for the sustained repression of vascular endothelial growth factor (VEGF), which is identified as the key player in exudative AMD. METHODS: We have employed short hairpin (sh)RNAs combined with adeno-associated virus (AAV) delivery to obtain the targeted expression of potent gene-regulatory molecules. Anti-VEGF shRNAs were analyzed in human retinal pigment epithelial (RPE) cells using Renilla luciferase screening. For in vivo delivery of the most potent shRNA, self-complementary AAV vectors were packaged in serotype 8 capsids (scAAV2/8-hU6-sh9). In vivo efficacy was evaluated either by injection of scAAV2/8-hU6-sh9 into murine hind limb muscles or in a laser-induced murine model of choroidal neovascularization (CNV) following scAAV2/8-hU6-sh9 subretinal delivery. RESULTS: Plasmids encoding anti-VEGF shRNAs showed efficient knockdown of human VEGF in RPEs. Intramuscular administration led to localized expression and 91% knockdown of endogenous murine (m)VEGF. Subsequently, the ability of AAV2/8-encoded shRNAs to impair vessel formation was evaluated in the murine model of CNV. In this model, the sizes of the CNV were significantly reduced (up to 48%) following scAAV2/8-hU6-sh9 subretinal delivery. CONCLUSIONS: Using anti-VEGF vectors, we have demonstrated efficient silencing of endogenous mVEGF and showed that subretinal administration of scAAV2/8-hU6-sh9 has the ability to impair vessel formation in an AMD animal model. Thus, AAV-encoded shRNA can be used for the inhibition of neovascularization, leading to the development of sustained anti-VEGF therapy. Copyright © 2012 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main goal of CleanEx is to provide access to public gene expression data via unique gene names. A second objective is to represent heterogeneous expression data produced by different technologies in a way that facilitates joint analysis and cross-data set comparisons. A consistent and up-to-date gene nomenclature is achieved by associating each single experiment with a permanent target identifier consisting of a physical description of the targeted RNA population or the hybridization reagent used. These targets are then mapped at regular intervals to the growing and evolving catalogues of human genes and genes from model organisms. The completely automatic mapping procedure relies partly on external genome information resources such as UniGene and RefSeq. The central part of CleanEx is a weekly built gene index containing cross-references to all public expression data already incorporated into the system. In addition, the expression target database of CleanEx provides gene mapping and quality control information for various types of experimental resource, such as cDNA clones or Affymetrix probe sets. The web-based query interfaces offer access to individual entries via text string searches or quantitative expression criteria. CleanEx is accessible at: http://www.cleanex.isb-sib.ch/.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Mammalian target of rapamycin (mTOR), a central regulator of cell growth, is found in two structurally and functionally distinct multiprotein complexes called mTOR complex (mTORC)1 and mTORC2. The specific roles of each of these branches of mTOR signaling have not been dissected in the adult heart. In the present study, we aimed to bring new insights into the function of cardiac mTORC1-mediated signaling in physiological as well as pathological situations.Methods: We generated mice homozygous for loxP-flanked raptor and positive for the tamoxifen-inducible Cre recombinase (MerCreMer) under control of the α- myosin heavy chain promoter. The raptor gene encodes an essential component of mTORC1. Gene ablation was induced at the age of 10-12 weeks, and two weeks later the raptor cardiac-knockout (raptor-cKO) mice started voluntary cagewheel exercise or were subjected to transverse aortic constriction (TAC) to induce pressure overload.Results: In sedentary raptor-cKO mice, ejection fractions gradually decreased, resulting in significantly reduced values at 38 days (P < 0.001). Raptor-cKO mice started to die during the fifth week after the last tamoxifen injection. At that time, the mortality rate was 36% in sedentary (n = 11) and 64% in exercising (n = 14) mice. TAC-induced pressure overload resulted in severe cardiac dysfunction already at earlier timepoints. Thus, at 7-9 days after surgery, ejection fraction and fractional shortening values were 22.3% vs 43.5% and 10.2% vs 21.5% in raptor-cKO vs wild-type mice, respectively. This was accompanied by significant reductions of ventricular wall and septal thickness as well as an increase in left ventricular internal diameter. Moreover, ventricular weight to tibial length ratios were increased in wild-type, but not in the raptor-cKO TAC mice. Together, this shows that raptor-cKO mice rapidly developed dilated cardiomyopathy without going through a phase of adaptive hypertrophy. Expression of ANP and β-MHC was induced in all raptor-cKO mice irrespective of the cardiac load conditions. Consistent with reduced mTORC1 activity, phosphorylation of ribosomal S6 kinase and 4E-BP1 was blunted, indicating reduced protein synthesis. Moreover, expression of multiple genes involved in the regulation of energy metabolism was altered, and followed by a shift from fatty acid to glucose oxidation.Conclusion: Our study suggests that mTORC1 coordinates protein and energy metabolic pathways in the heart. Moreover, we demonstrate that raptor is essential for the cardiac adaptation to increased workload and importantly, also for normal physiological cardiac function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In many species, the introduction of double-stranded RNA induces potent and specific gene silencing, referred to as RNA interference. This phenomenon, which is based on targeted degradation of mRNAs and occurs in almost any eukaryote, from trypanosomes to mice including plants and fungi, has sparked general interest from both applied and fundamental standpoints. RNA interference, which is currently used to investigate gene function in a variety of systems, is linked to natural resistance to viruses and transposon silencing, as if it were a primitive immune system involved in genome surveillance. Here, we review the mechanism of RNA interference in post-transcriptional gene silencing, its function in nature, its value for functional genomic analysis, and the modifications and improvements that may make it more efficient and inheritable. We also discuss the future directions of this versatile technique in both fundamental and applied science.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Machado-Joseph disease or Spinocerebellar ataxia type 3 is a progressive fatal neurodegenerative disorder caused by the polyglutamine-expanded protein ataxin-3. Recent studies demonstrate that RNA interference is a promising approach for the treatment of Machado-Joseph disease. However, whether gene silencing at an early time-point is able to prevent the appearance of motor behavior deficits typical of the disease when initiated before onset of the disease had not been explored. Here, using a lentiviral-mediated allele-specific silencing of mutant ataxin-3 in an early pre-symptomatic cerebellar mouse model of Machado-Joseph disease we show that this strategy hampers the development of the motor and neuropathological phenotypic characteristics of the disease. At the histological level, the RNA-specific silencing of mutant ataxin-3 decreased formation of mutant ataxin-3 aggregates, preserved Purkinje cell morphology and expression of neuronal markers while reducing cell death. Importantly, gene silencing prevented the development of impairments in balance, motor coordination, gait and hyperactivity observed in control mice. These data support the therapeutic potential of RNA interference for Machado-Joseph disease and constitute a proof of principle of the beneficial effects of early allele-specific silencing for therapy of this disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Malignant gliomas, including the most common and fatal form glioblastoma (GBM, WHO grade IV astrocytoma), remain a challenge to treat. In the United States and Europe, more than 30,000 patients per year are newly diagnosed with GBM. Despite ongoing trials, the best currently available multimodal treatment approaches include surgical resection followed by concomitant and adjuvant radiation (RT) and temozolomide (TMZ) therapy, resulting in a low median overall survival (OS) rate ranging from 12.2 - 15.9 months. The important role of genetic and epigenetic changes in DNA, RNA, and protein alteration as well as epigenetic changes secondary to the tumor microenvironment and outside selection pressure (therapeutic interventions), are increasingly being recognized. In GBM treatment, the focus is shifting toward a more patient-centered (personalized) therapy. In this regard, in particular, microRNAs are being increasingly studied. MicroRNAs are non¬protein coding small RNAs that serve as negative gene regulators by binding to a specific sequence in the promoter region of a target gene, thus regulating gene expression. A single microRNA potentially targets hundreds of genes; thus, microRNAs and their cognate target genes have important roles as tumor suppressors and oncogenes as well as regulators of various cancer- specific cellular features, such as proliferation, apoptosis, invasion, and metastasis. The identification of distinct microRNA-gene regulatory networks in GBM patients can be expected to provide novel therapeutic insights by identifying candidate patients for targeted therapies. To this end, in this work we identified and validated clinically relevant and meaningful novel gene- microRNA regulatory networks that correlated with MR tumor phenotypes, histopathology, and patient survival and response rates to therapy. - Le traitement des gliomes malins, y compris sous leur forme la plus commune et meurtrière, le glioblastome (GBM, ou astrocytome de grade IV selon l'OMS), demeure à ce jour un défi. Aux États-Unis et en Europe, un nouveau diagnostic de GBM est prononcé dans plus de 30Ό00 cas par an. En dépit de tests en cours, les meilleures approches thérapeutiques combinées actuellement disponibles comprennent la résection chirurgicale de la tumeur, suivie d'une radiothérapie adjuvante ainsi que d'un traitement au temozolomide (RT/TMZ), thérapies dont résulte une médiane de survie globale basse (overall survival, OS), comprise entre 12.2 et 15.9 mois. On reconnaît de plus en plus le rôle majeur de l'ADN, de l'ARN et de l'altération des protéines ainsi que des modifications épigénétiques, secondaires par rapport au microenvironnement de la tumeur et à la pression de sélection extérieure (les interventions thérapeutiques). Dans le traitement du GBM, le centre d'intérêt se déplace vers une thérapie centrée sur le cas individuel du patient. Dans ce but, en particulier les microARN sont de plus en plus analysés. Les microARN sont de petits ARN non-codants (les protéines) qui servent de régulateurs négatifs de gènes en s'attachant à une séquence spécifique dans la région promotrice d'un gène-cible, régulant ainsi l'expression du gène. Un seul microARN cible potentiellement des centaines de gènes; on a ainsi découvert que les microARN et leurs gènes-cibles apparentés ont une fonction importante en tant que suppresseurs de tumeurs et d'oncogènes, ainsi que comme régulateurs de diverses caractéristiques cellulaires spécifiques du cancer, comme la prolifération, l'apoptose, l'invasion et la métastase. On peut s'attendre à ce que l'identification de réseaux microARN régulateurs de gènes, distincts selon les patients de GBM, fournisse une approche thérapeutique inédite par la détermination des patients susceptibles de réagir favorablement à des thérapies ciblées.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For tissue engineering, several cell types and tissues have been proposed as starting material. Allogenic skin products available for therapeutic usage are mostly developed with cell culture and with foreskin tissue of young individuals. Fetal skin cells offer a valuable solution for effective and safe tissue engineering for wounds due to their rapid growth and simple cell culture. By selecting families of genes that have been reported to be implicated in wound repair and particularly for scarless fetal wound healing including transforming growth factor-beta (TGF-beta) superfamily, extracellular matrix, and nerve/angiogenesis growth factors, we have analyzed differences in their expression between fetal skin and foreskin cells, and the same passages. Of the five TGF-beta superfamily genes analyzed by real-time reverse transcription-polymerase chain reaction, three were found to be significantly different with sixfold up-regulated for TGF-beta2, and 3.8-fold for BMP-6 in fetal cells, whereas GDF-10 was 11.8-fold down-regulated. For nerve growth factors, midkine was 36-fold down-regulated in fetal cells, and pleiotrophin was 4.76-fold up-regulated. We propose that fetal cells present technical and therapeutic advantages compared to foreskin cells for effective cell-based therapy for wound management, and overall differences in gene expression could contribute to the degree of efficiency seen in clinical use with these cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Within the ENCODE Consortium, GENCODE aimed to accurately annotate all protein-coding genes, pseudogenes, and noncoding transcribed loci in the human genome through manual curation and computational methods. Annotated transcript structures were assessed, and less well-supported loci were systematically, experimentally validated. Predicted exon-exon junctions were evaluated by RT-PCR amplification followed by highly multiplexed sequencing readout, a method we called RT-PCR-seq. Seventy-nine percent of all assessed junctions are confirmed by this evaluation procedure, demonstrating the high quality of the GENCODE gene set. RT-PCR-seq was also efficient to screen gene models predicted using the Human Body Map (HBM) RNA-seq data. We validated 73% of these predictions, thus confirming 1168 novel genes, mostly noncoding, which will further complement the GENCODE annotation. Our novel experimental validation pipeline is extremely sensitive, far more than unbiased transcriptome profiling through RNA sequencing, which is becoming the norm. For example, exon-exon junctions unique to GENCODE annotated transcripts are five times more likely to be corroborated with our targeted approach than with extensive large human transcriptome profiling. Data sets such as the HBM and ENCODE RNA-seq data fail sampling of low-expressed transcripts. Our RT-PCR-seq targeted approach also has the advantage of identifying novel exons of known genes, as we discovered unannotated exons in ~11% of assessed introns. We thus estimate that at least 18% of known loci have yet-unannotated exons. Our work demonstrates that the cataloging of all of the genic elements encoded in the human genome will necessitate a coordinated effort between unbiased and targeted approaches, like RNA-seq and RT-PCR-seq.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Therapy of chronic hepatitis C (CHC) with pegIFNα/ribavirin achieves a sustained virologic response (SVR) in ∼55%. Pre-activation of the endogenous interferon system in the liver is associated with non-response (NR). Recently, genome-wide association studies described associations of allelic variants near the IL28B (IFNλ3) gene with treatment response and with spontaneous clearance of the virus. We investigated if the IL28B genotype determines the constitutive expression of IFN stimulated genes (ISGs) in the liver of patients with CHC. METHODS: We genotyped 93 patients with CHC for 3 IL28B single nucleotide polymorphisms (SNPs, rs12979860, rs8099917, rs12980275), extracted RNA from their liver biopsies and quantified the expression of IL28B and of 8 previously identified classifier genes which discriminate between SVR and NR (IFI44L, RSAD2, ISG15, IFI22, LAMP3, OAS3, LGALS3BP and HTATIP2). Decision tree ensembles in the form of a random forest classifier were used to calculate the relative predictive power of these different variables in a multivariate analysis. RESULTS: The minor IL28B allele (bad risk for treatment response) was significantly associated with increased expression of ISGs, and, unexpectedly, with decreased expression of IL28B. Stratification of the patients into SVR and NR revealed that ISG expression was conditionally independent from the IL28B genotype, i.e. there was an increased expression of ISGs in NR compared to SVR irrespective of the IL28B genotype. The random forest feature score (RFFS) identified IFI27 (RFFS = 2.93), RSAD2 (1.88) and HTATIP2 (1.50) expression and the HCV genotype (1.62) as the strongest predictors of treatment response. ROC curves of the IL28B SNPs showed an AUC of 0.66 with an error rate (ERR) of 0.38. A classifier with the 3 best classifying genes showed an excellent test performance with an AUC of 0.94 and ERR of 0.15. The addition of IL28B genotype information did not improve the predictive power of the 3-gene classifier. CONCLUSIONS: IL28B genotype and hepatic ISG expression are conditionally independent predictors of treatment response in CHC. There is no direct link between altered IFNλ3 expression and pre-activation of the endogenous system in the liver. Hepatic ISG expression is by far the better predictor for treatment response than IL28B genotype.