915 resultados para REGULATORY GUARANTEES
Resumo:
Cholesterol feeding reduces the mRNAs encoding multiple enzymes in the cholesterol biosynthetic pathway and the low density lipoprotein receptor in livers of hamsters. Here we show that cholesterol feeding also reduces the levels of the nuclear NH2-terminal domains of sterol regulatory element binding proteins (SREBPs), which activate transcription of sterol-regulated genes. We show that livers of hamsters, like those of mice and humans, predominantly produce SREBP-2 and the 1c isoform of SREBP-1. Both are produced as membrane-bound precursors that must be proteolyzed to release the transcriptionally active NH2-terminal domains. Diets containing 0.1% to 1.0% cholesterol decreased the amount of nuclear SREBP-1c without affecting the amount of the membrane precursor or its mRNA, suggesting that cholesterol inhibits the proteolytic processing of SREBP-1 in liver as it does in cultured cells. Cholesterol also appeared to reduce the proteolytic processing of SREBP-2. In addition, at high levels of dietary cholesterol the mRNA encoding SREBP-2 declined and the amount of the precursor also fell, suggesting that cholesterol accumulation also may inhibit transcription of the SREBP-2 gene. The high-cholesterol diets reduced the amount of low density lipoprotein receptor mRNA by 30% and produced a more profound 70–90% reduction in mRNAs encoding 3-hydroxy-3-methylglutaryl CoA synthase and reductase. Treatment with lovastatin and Colestipol, which increases hepatic demands for cholesterol, increased the amount of SREBP-2 mRNA as well as the precursor and nuclear forms of the protein. This treatment caused a reciprocal decline in SREBP-1c mRNA and protein. Considered together, these data suggest that SREBPs play important roles in controlling transcription of sterol-regulated genes in liver, as they do in cultured cells.
Resumo:
We have asked whether comparative genome analysis and rat transgenesis can be used to identify functional regulatory domains in the gene locus encoding the hypothalamic neuropeptides oxytocin (OT) and vasopressin. Isotocin (IT) and vasotocin (VT) are the teleost homologues of these genes. A contiguous stretch of 46 kb spanning the Fugu IT-VT locus has been sequenced, and nine putative genes were found. Unlike the OT and vasopressin genes, which are closely linked in the mammalian genome in a tail-to-tail orientation, Fugu IT and VT genes are linked head to tail and are separated by five genes. When a cosmid containing the Fugu IT-VT locus was introduced into the rat genome, we found that the Fugu IT gene was specifically expressed in rat hypothalamic oxytocinergic neurons and mimicked the response of the endogenous OT gene to an osmotic stimulus. These data show that cis-acting elements and trans-acting factors mediating the cell-specific and physiological regulation of the OT and IT genes are conserved between mammals and fish. The combination of Fugu genome analysis and transgenesis in a mammal is a powerful tool for identifying and analyzing conserved vertebrate regulatory elements.
Resumo:
The efficient expression of therapeutic genes in target cells or tissues is an important component of efficient and safe gene therapy. Utilizing regulatory elements from the human cytokeratin 18 (K18) gene, including 5′ genomic sequences and one of its introns, we have developed a novel expression cassette that can efficiently express reporter genes, as well as the human cystic fibrosis transmembrane conductance regulator (CFTR) gene, in cultured lung epithelial cells. CFTR transcripts expressed from the native K18 enhancer/promoter include two alternative splicing products, due to the activation of two cryptic splice sites in the CFTR coding region. Modification of the K18 intron and CFTR cDNA sequences eliminated the cryptic splice sites without changing the CFTR amino acid sequence, and led to enhanced CFTR mRNA and protein expression as well as biological function. Transgenic expression analysis in mice showed that the modified expression cassette can direct efficient and epithelium-specific expression of the Escherichia coli LacZ gene in the airways of fetal lungs, with no detectable expression in lung fibroblasts or endothelial cells. This is the first expression cassette which selectively directs lung transgene expression for CFTR gene therapy to airway epithelia.
Resumo:
The myofibrils of cross-striated muscle fibers contain in their M bands cytoskeletal proteins whose main function seems to be the stabilization of the three-dimensional arrangement of thick filaments. We identified two immunoglobin domains (Mp2–Mp3) of M-protein as a site binding to the central region of light meromyosin. This binding is regulated in vitro by phosphorylation of a single serine residue (Ser76) in the immediately adjacent amino-terminal domain Mp1. M-protein phosphorylation by cAMP-dependent kinase A inhibits binding to myosin LMM. Transient transfection studies of cultured cells revealed that the myosin-binding site seems involved in the targeting of M-protein to its location in the myofibril. Using the same method, a second myofibril-binding site was uncovered in domains Mp9–Mp13. These results support the view that specific phosphorylation events could be also important for the control of sarcomeric M band formation and remodeling.
Resumo:
The sterol regulatory element–binding protein-2 (SREBP-2) is produced as a large precursor molecule attached to the endoplasmic reticulum membrane. In response to the sterol depletion, the N-terminal segment of the precursor, which contains a basic helix-loop-helix–leucine zipper domain, is released by two sequential cleavages and is translocated to the nucleus, where it activates the transcription of target genes. The data herein show that released SREBP-2 uses a distinct nuclear transport pathway, which is mediated by importin β. The mature form of SREBP-2 is actively transported into the nucleus when injected into the cell cytoplasm. SREBP-2 binds directly to importin β in the absence of importin α. Ran-GTP but not Ran-GDP causes the dissociation of the SREBP-2–importin β complex. G19VRan-GTP inhibits the nuclear import of SREBP-2 in living cells. In the permeabilized cell in vitro transport system, nuclear import of SREBP-2 is reconstituted only by importin β in conjunction with Ran and its interacting protein p10/NTF2. We further demonstrate that the helix-loop-helix–leucine zipper motif of SREBP-2 contains a novel type of nuclear localization signal, which binds directly to importin β.
Resumo:
Exit from mitosis requires the inactivation of mitotic cyclin-dependent kinase–cyclin complexes, primarily by ubiquitin-dependent cyclin proteolysis. Cyclin destruction is regulated by a ubiquitin ligase known as the anaphase-promoting complex (APC). In the budding yeast Saccharomyces cerevisiae, members of a large class of late mitotic mutants, including cdc15, cdc5, cdc14, dbf2, and tem1, arrest in anaphase with a phenotype similar to that of cells expressing nondegradable forms of mitotic cyclins. We addressed the possibility that the products of these genes are components of a regulatory network that governs cyclin proteolysis. We identified a complex array of genetic interactions among these mutants and found that the growth defect in most of the mutants is suppressed by overexpression of SPO12, YAK1, and SIC1 and is exacerbated by overproduction of the mitotic cyclin Clb2. When arrested in late mitosis, the mutants exhibit a defect in cyclin-specific APC activity that is accompanied by high Clb2 levels and low levels of the anaphase inhibitor Pds1. Mutant cells arrested in G1 contain normal APC activity. We conclude that Cdc15, Cdc5, Cdc14, Dbf2, and Tem1 cooperate in the activation of the APC in late mitosis but are not required for maintenance of that activity in G1.
Resumo:
To examine the possibility of active recycling of Emp24p between the endoplasmic reticulum (ER) and the Golgi, we sought to identify transport signal(s) in the carboxyl-terminal region of Emp24p. Reporter molecules were constructed by replacing parts of a control invertase-Wbp1p chimera with those of Emp24p, and their transport rates were assessed. The transport of the reporter was found to be accelerated by the presence of the cytoplasmic domain of Emp24p. Mutational analyses revealed that the two carboxyl-terminal residues, leucine and valine (LV), were necessary and sufficient to accelerate the transport. The acceleration was sequence specific, and the terminal valine appeared to be more important. The LV residues accelerated not only the overall transport to the vacuole but also the ER to cis-Golgi transport, suggesting its function in the ER export. Hence the LV residues are a novel anterograde transport signal. The double-phenylalanine residues did not affect the transport by itself but attenuated the effect of the anterograde transport signal. On the other hand, the transmembrane domain significantly slowed down the ER to cis-Golgi transport and effectively counteracted the anterograde transport signal at this step. It may also take part in the retrieval of the protein, because the overall transport to the vacuole was more evidently slowed down. Consistently, the mutation of a conserved glutamine residue in the transmembrane domain further slowed down the transport in a step after arriving at the cis-Golgi. Taken together, the existence of the anterograde transport signal and the elements that regulate its function support the active recycling of Emp24p.
Resumo:
Cardiac troponin C (cTnC) is the calcium-dependent switch for contraction in heart muscle and a potential target for drugs in the therapy of congestive heart failure. This calmodulin-like protein consists of two lobes connected by a central linker; each lobe contains two EF-hand domains. The regulatory N-terminal lobe of cTnC, unlike that of skeletal troponin C (sTnC), contains only one functional EF-hand and does not open fully upon the binding of Ca2+. We have determined the crystal structure of cTnC, with three bound Ca2+ ions, complexed with the calcium-sensitizer bepridil, to 2.15-Å resolution. In contrast to apo- and 3Ca2+-cTnC, the drug-bound complex displays a fully open N-terminal lobe similar to the N-terminal lobes of 4Ca2+-sTnC and cTnC bound to a C-terminal fragment of cardiac troponin I (residues 147–163). The closing of the lobe is sterically hindered by one of the three bound bepridils. Our results provide a structural basis for the Ca2+-sensitizing effect of bepridil and reveal the details of a distinctive two-stage mechanism for Ca2+ regulation by troponin C in cardiac muscle.
Resumo:
The expression of the cellular form of the prion protein (PrPc) gene is required for prion replication and neuroinvasion in transmissible spongiform encephalopathies. The identification of the cell types expressing PrPc is necessary to understanding how the agent replicates and spreads from peripheral sites to the central nervous system. To determine the nature of the cell types expressing PrPc, a green fluorescent protein reporter gene was expressed in transgenic mice under the control of 6.9 kb of the bovine PrP gene regulatory sequences. It was shown that the bovine PrP gene is expressed as two populations of mRNA differing by alternative splicing of one 115-bp 5′ untranslated exon in 17 different bovine tissues. The analysis of transgenic mice showed reporter gene expression in some cells that have been identified as expressing PrP, such as cerebellar Purkinje cells, lymphocytes, and keratinocytes. In addition, expression of green fluorescent protein was observed in the plexus of the enteric nervous system and in a restricted subset of cells not yet clearly identified as expressing PrP: the epithelial cells of the thymic medullary and the endothelial cells of both the mucosal capillaries of the intestine and the renal capillaries. These data provide valuable information on the distribution of PrPc at the cellular level and argue for roles of the epithelial and endothelial cells in the spread of infection from the periphery to the brain. Moreover, the transgenic mice described in this paper provide a model that will allow for the study of the transcriptional activity of the PrP gene promoter in response to scrapie infection.
Resumo:
After periods of high-frequency firing, the normal rhythmically active serotonin (5HT)-containing neurosecretory neurons of the lobster ventral nerve cord display a period of suppressed spike generation and reduced synaptic input that we refer to as “autoinhibition.” The duration of this autoinhibition is directly related to the magnitude and duration of the current injection triggering the high-frequency firing. More interesting, however, is that the autoinhibition is inversely related to the initial firing frequency of these cells within their normal range of firing (0.5–3 Hz). This allows more active 5HT neurons to resume firing after shorter durations of inhibition than cells that initially fired at slower rates. Although superfused 5HT inhibits the spontaneous firing of these cells, the persistence of autoinhibition in saline with no added calcium, in cadmium-containing saline, and in lobsters depleted of serotonin suggests that intrinsic membrane properties account for the autoinhibition. A similar autoinhibition is seen in spontaneously active octopamine neurons but is absent from spontaneously active γ-aminobutyric acid cells. Thus, this might be a characteristic feature of amine-containing neurosecretory neurons. The 5HT cells of vertebrate brain nuclei share similarities in firing frequencies, spike shapes, and inhibition by 5HT with the lobster cells that were the focus of this study. However, the mechanism suggested to underlie autoinhibition in vertebrate neurons is that 5HT released from activated or neighboring cells acts back on inhibitory autoreceptors that are found on the dendrites and cell bodies of these neurons.
Resumo:
Overaccumulation of lipids in nonadipose tissues of obese rodents may lead to lipotoxic complications such as diabetes. To assess the pathogenic role of the lipogenic transcription factor, sterol regulatory element binding protein 1 (SREBP-1), we measured its mRNA in liver and islets of obese, leptin-unresponsive fa/fa Zucker diabetic fatty rats. Hepatic SREBP-1 mRNA was 2.4 times higher than in lean +/+ controls, primarily because of increased SREBP-1c expression. mRNA of lipogenic enzymes ranged from 2.4- to 4.6-fold higher than lean controls, and triacylglycerol (TG) content was 5.4 times higher. In pancreatic islets of fa/fa rats, SREBP-1c was 3.4 times higher than in lean +/+ Zucker diabetic fatty rats. The increase of SREBP-1 in liver and islets of untreated fa/fa rats was blocked by 6 weeks of troglitazone therapy, and the diabetic phenotype was prevented. Up-regulation of SREBP-1 also occurred in livers of Sprague–Dawley rats with diet-induced obesity. Hyperleptinemia, induced in lean +/+ rats by adenovirus gene transfer, lowered hepatic SREBP-1c by 74% and the lipogenic enzymes from 35 to 59%. In conclusion, overnutrition increases and adenovirus-induced hyperleptinemia decreases SREBP-1c expression in liver and islets. SREBP-1 overexpression, which is prevented by troglitazone, may play a role in the ectopic lipogenesis and lipotoxicity complicating obesity in Zucker diabetic fatty rats.
Resumo:
The transcription of fatty acid synthase (FAS), a central enzyme in de novo lipogenesis, is dramatically induced by fasting/refeeding and insulin. We reported that upstream stimulatory factor binding to the −65 E-box is required for induction of the FAS transcription by insulin in 3T3-L1 adipocytes. On the other hand, we recently found that two upstream 5′ regions are required for induction in vivo by fasting/refeeding and insulin; one at −278 to −131 albeit at a low level, and the other at −444 to −278 with an E-box at −332 where upstream stimulatory factor functions for maximal induction. Here, we generated double transgenic mice carrying the chloramphenicol acetyltransferase reporter driven by the various 5′ deletions of the FAS promoter region and a truncated active form of the sterol regulatory element (SRE) binding protein (SREBP)-1a. We found that SREBP participates in the nutritional regulation of the FAS promoter and that the region between −278 and −131 bp is required for SREBP function. We demonstrate that SREBP binds the −150 canonical SRE present between −278 and −131, and SREBP can function through the −150 SRE in cultured cells. These in vivo and in vitro results indicate that SREBP is involved in the nutritional induction of the FAS promoter via the −278/−131 region and that the −150 SRE is the target sequence.
Resumo:
Hepatic lipid synthesis is known to be regulated by food consumption. In rodents fasting decreases the synthesis of cholesterol as well as fatty acids. Refeeding a high carbohydrate/low fat diet enhances fatty acid synthesis by 5- to 20-fold above the fed state, whereas cholesterol synthesis returns only to the prefasted level. Sterol regulatory element binding proteins (SREBPs) are transcription factors that regulate genes involved in cholesterol and fatty acid synthesis. Here, we show that fasting markedly reduces the amounts of SREBP-1 and -2 in mouse liver nuclei, with corresponding decreases in the mRNAs for SREBP-activated target genes. Refeeding a high carbohydrate/low fat diet resulted in a 4- to 5-fold increase of nuclear SREBP-1 above nonfasted levels, whereas nuclear SREBP-2 protein returned only to the nonfasted level. The hepatic mRNAs for fatty acid biosynthetic enzymes increased 5- to 10-fold above nonfasted levels, a pattern that paralleled the changes in nuclear SREBP-1. The hepatic mRNAs for enzymes involved in cholesterol synthesis returned to the nonfasted level, closely following the pattern of nuclear SREBP-2 regulation. Transgenic mice that overproduce nuclear SREBP-1c failed to show the normal decrease in hepatic mRNA levels for cholesterol and fatty acid synthetic enzymes upon fasting. We conclude that SREBPs are regulated by food consumption in the mouse liver and that the decline in nuclear SREBP-1c upon fasting may explain in part the decrease in mRNAs encoding enzymes of the fatty acid biosynthetic pathway.
Resumo:
The DNA binding activity of p53 is crucial for its tumor suppressor function and is subject to tight regulation. Previous studies revealed that the inhibitory function of the p53 C terminus is implicated in the latent, low affinity sequence-specific DNA binding activity of p53 in the uninduced state. Sequence-specific DNA binding of p53 has been shown to be activated by several posttranslational modifications and interacting proteins that target predominantly the C terminus. Moreover, several authors have shown that synthetic peptides corresponding to p53 C-terminal sequences activate p53 sequence-specific DNA binding. In an effort to identify the interaction site of p53 with these activating peptides we assessed complex formation between p53 deletion constructs and C-terminal activating peptides by peptide affinity precipitation. This study revealed that two distal regions of the p53 molecule contribute synergistically to the interaction with activating C-terminal peptides: amino acids 80–93 and 364–393. The C-terminal residues 364–393 are already well characterized as having negative regulatory function. DNA binding analyses with these deletion constructs reveal a comparable negative regulatory activity for residues 80–93, defining this region as a previously unidentified negative regulatory domain of p53. Furthermore, synthetic peptides spanning this newly identified proline-rich negative regulatory region (residues 80–93) are able to activate p53 sequence-specific DNA binding in vitro. We suggest that both negative regulatory regions, residues 80–93 and 364–393, contribute cooperatively to the maintenance of the latent, low-affinity DNA binding conformation of p53.
Resumo:
The Snf1 protein kinase family has been conserved in eukaryotes. In the yeast Saccharomyces cerevisiae, Snf1 is essential for transcription of glucose-repressed genes in response to glucose starvation. The direct interaction between Snf1 and its activating subunit, Snf4, within the kinase complex is regulated by the glucose signal. Glucose inhibition of the Snf1-Snf4 interaction depends on protein phosphatase 1 and its targeting subunit, Reg1. Here we show that Reg1 interacts with the Snf1 catalytic domain in the two-hybrid system. This interaction increases in response to glucose limitation and requires the conserved threonine in the activation loop of the kinase, a putative phosphorylation site. The inhibitory effect of Reg1 appears to require the Snf1 regulatory domain because a reg1Δ mutation no longer relieves glucose repression of transcription when Snf1 function is provided by the isolated catalytic domain. Finally, we show that abolishing the Snf1 catalytic activity by mutation of the ATP-binding site causes elevated, constitutive interaction with Reg1, indicating that Snf1 negatively regulates its own interaction with Reg1. We propose a model in which protein phosphatase 1, targeted by Reg1, facilitates the conformational change of the kinase complex from its active state to the autoinhibited state.