979 resultados para Quantum harmonic oscillator


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a quantum dot based DNA nanosensor specifically targeting the cleavage step in the reaction cycle of the essential DNA-modifying enzyme, mycobacterial topoisomerase I. The design takes advantages of the unique photophysical properties of quantum dots to generate visible fluorescence recovery upon specific cleavage by mycobacterial topoisomerase I. This report, for the first time, demonstrates the possibility to quantify the cleavage activity of the mycobacterial enzyme without the pre-processing sample purification or post-processing signal amplification. The cleavage induced signal response has also proven reliable in biological matrices, such as whole cell extracts prepared from Escherichia coli and human Caco-2 cells. It is expected that the assay may contribute to the clinical diagnostics of bacterial diseases, as well as the evaluation of treatment outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantum cellular automata (QCA) is a new technology in the nanometer scale and has been considered as one of the alternative to CMOS technology. In this paper, we describe the design and layout of a serial memory and parallel memory, showing the layout of individual memory cells. Assuming that we can fabricate cells which are separated by 10nm, memory capacities of over 1.6 Gbit/cm2 can be achieved. Simulations on the proposed memories were carried out using QCADesigner, a layout and simulation tool for QCA. During the design, we have tried to reduce the number of cells as well as to reduce the area which is found to be 86.16sq mm and 0.12 nm2 area with the QCA based memory cell. We have also achieved an increase in efficiency by 40%.These circuits are the building block of nano processors and provide us to understand the nano devices of the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nano-crystals of LiNbxTa1 (-) O-x(3) were evolved by subjecting melt-quenched 1.5Li(2)O-2B(2)O(3)-xNb(2)O(5)-(1 - x)Ta2O5 glasses (where x = 0, 0.25, 0.5, 0.75 and 1.00) to a controlled 3-h isothermal heat treatment between 530 and 560 degrees C. Detailed X-ray diffraction and Raman spectral studies confirmed the formation of nano-crystalline LiNbxTa1 (-) O-x(3) along with a minor phase of ferroelectric and non-linear optic Li2B4O7. The sizes of the nanocrystals evolved in the glass were in the range of 19-37 nm for x = 0-0.75 and 23-45 nm for x = 1.00. Electron microscopic studies confirmed a transformation of the morphology of the nano-crystallites from dendritic star-shaped spherulites for x = 0 to rod-shaped structures for x = 1.00 brought about by a coalescence of crystallites. Broad Maker-fringe patterns (recorded at 532 nm) were obtained by subjecting the heat-treated glass plates to 1064 nm fundamental radiation. However, an effective second order non-linear optic coefficient, d(eff), of 0.45 pm/V, which is nearly 1.2 times the d(36) of KDP single crystal, was obtained for a 560 degrees C/3 h heat-treated glass of the representative composition x = 0.50 comprising 37 nm sized crystallites. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantifying and characterising atomic defects in nanocrystals is difficult and low-throughput using the existing methods such as high resolution transmission electron microscopy (HRTEM). In this article, using a defocused wide-field optical imaging technique, we demonstrate that a single ultrahigh-piezoelectric ZnO nanorod contains a single defect site. We model the observed dipole-emission patterns from optical imaging with a multi-dimensional dipole and find that the experimentally observed dipole pattern and model-calculated patterns are in excellent agreement. This agreement suggests the presence of vertically oriented degenerate-transition-dipoles in vertically aligned ZnO nanorods. The HRTEM of the ZnO nanorod shows the presence of a stacking fault, which generates a localised quantum well induced degenerate-transition-dipole. Finally, we elucidate that defocused wide-field imaging can be widely used to characterise defects in nanomaterials to answer many difficult questions concerning the performance of low-dimensional devices, such as in energy harvesting, advanced metal-oxide-semiconductor storage, and nanoelectromechanical and nanophotonic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nano-crystals of LiNbxTa1 (-) O-x(3) were evolved by subjecting melt-quenched 1.5Li(2)O-2B(2)O(3)-xNb(2)O(5)-(1 - x)Ta2O5 glasses (where x = 0, 0.25, 0.5, 0.75 and 1.00) to a controlled 3-h isothermal heat treatment between 530 and 560 degrees C. Detailed X-ray diffraction and Raman spectral studies confirmed the formation of nano-crystalline LiNbxTa1 (-) O-x(3) along with a minor phase of ferroelectric and non-linear optic Li2B4O7. The sizes of the nanocrystals evolved in the glass were in the range of 19-37 nm for x = 0-0.75 and 23-45 nm for x = 1.00. Electron microscopic studies confirmed a transformation of the morphology of the nano-crystallites from dendritic star-shaped spherulites for x = 0 to rod-shaped structures for x = 1.00 brought about by a coalescence of crystallites. Broad Maker-fringe patterns (recorded at 532 nm) were obtained by subjecting the heat-treated glass plates to 1064 nm fundamental radiation. However, an effective second order non-linear optic coefficient, d(eff), of 0.45 pm/V, which is nearly 1.2 times the d(36) of KDP single crystal, was obtained for a 560 degrees C/3 h heat-treated glass of the representative composition x = 0.50 comprising 37 nm sized crystallites. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-assembled InN quantum dots (QDs) were grown on Si(111) substrate using plasma assisted molecular beam epitaxy (PA-MBE). Single-crystalline wurtzite structure of InN QDs was confirmed by X-ray diffraction. The dot densities were varied by varying the indium flux. Variation of dot density was confirmed by FESEM images. Interdigitated electrodes were fabricated using standard lithography steps to form metal-semiconductor-metal (MSM) photodetector devices. The devices show strong infrared response. It was found that the samples with higher density of InN QDs showed lower dark current and higher photo current. An explanation was provided for the observations and the experimental results were validated using Silvaco Atlas device simulator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Restricted area heterojunctions, an array of lead sulfide colloidal quantum dots (PbS-CQDs) and crystalline silicon, are studied with a non-destructive remote contact light beam induced current (RC-LBIC) technique. As well as getting good quality active area images we observed an anomalous unipolar signal response for the PbS-CQD/n-Si devices and a conventionally expected bipolar signal profile for the PbS-CQD/p-Si devices. Interestingly, our simulation results consistently yielded a unipolar and bipolar nature in the signals related to the PbSCQD/n-Si and PbS-CQD/p-Si heterostructures, respectively. In order to explain the physical mechanism involved in the unipolar signal response of the PbS-CQD/n-Si devices, we propose a model based on the band alignment in the heterojunctions, in addition to the distribution of photo-induced excess majority carriers across the junction. Given that the RC-LBIC technique is well suited to this context, the presence of these two distinct mechanisms (the bipolar and unipolar nature of the signals) needs to be considered in order to have a better interpretation of the data in the characterization of an array of homo/heterojunctions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We first study a class of fundamental quantum stochastic processes induced by the generators of a six dimensional non-solvable Lie dagger-algebra consisting of all linear combinations of the generalized Gross Laplacian and its adjoint, annihilation operator, creation operator, conservation, and time, and then we study the quantum stochastic integrals associated with the class of fundamental quantum stochastic processes, and the quantum Ito formula is revisited. The existence and uniqueness of solution of a quantum stochastic differential equation is proved. The unitarity conditions of solutions of quantum stochastic differential equations associated with the fundamental processes are examined. The quantum stochastic calculus extends the Hudson-Parthasarathy quantum stochastic calculus. (C) 2016 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exciton-phonon coupling and nonradiative relaxation processes have been investigated in near-infrared (NIR) emitting ternary alloyed mercury cadmium telluride (CdHgTe) quantum dots. Organically capped CdHgTe nanocrystals of sizes varying from 2.5-4.2 nm have been synthesized where emission is in the NIR region of 650-855 nm. Temperature-dependent (15-300 K) photoluminescence (PL) and the decay dynamics of PL at 300 K have been studied to understand the photophysical properties. The PL decay kinetics shows the transition from triexponential to biexponential on increasing the size of the quantom dots (QDs), informing the change in the distribution of the emitting states. The energy gap is found to be following the Varshni relation with a temperature coefficient of 2.1-2.8 x 10(-4) eV K-1. The strength of the electron-phonon coupling, which is reflected in the Huang and Rhys factor S, is found in the range of 1.17-1.68 for QDs with a size of 2.5-4.2 nm. The integrated PL intensity is nearly constant until 50 K, and slowly decreases up to 140 K, beyond which it decreases at a faster rate. The mechanism for PL quenching with temperature is attributed to the presence of nonradiative relaxation channels, where the excited carriers are thermally stimulated to the surface defect/trap states. At temperatures of different region (<140 K and 140-300 K), traps of low (13-25 meV) and high (65-140 meV) activation energies seem to be controlling the quenching of the PL emission. The broadening of emission linewidth is found to due to exciton-acoustic phonon scattering and exciton-longitudinal optical (LO) phonon coupling. The exciton-acoustic phonon scattering coefficient is found to be enhanced up to 55 MU eV K-1 due to a stronger confinement effect. These findings give insight into understanding the photophysical properties of CdHgTe QDs and pave the way for their possible applications in the fields of NIR photodetectors and other optoelectronic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inhibition effect of colchicine (CC) on mild steel (MS) corrosion in 1 M HCl solution has been investigated by electrochemical techniques such as electrochemical impedance spectroscopy, potentiodynamic polarization, chronoamperometry and also by the gravimetric method. Polarization studies showed that CC acts as mixed type corrosion inhibitor. The inhibitor adsorption process in the MS/CC/HCl system was studied at different temperatures (303-333 K). The adsorption of CC on MS surface is an exothermic process and obeys the Langmuir adsorption isotherm. Based on potential of zero charge values and quantum chemical parameters, the mechanism of adsorption has been proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A low-order harmonic pulsating torque is a major concern in high-power drives, high-speed drives, and motor drives operating in an overmodulation region. This paper attempts to minimize the low-order harmonic torques in induction motor drives, operated at a low pulse number (i.e., a low ratio of switching frequency to fundamental frequency), through a frequency domain (FD) approach as well as a synchronous reference frame (SRF) based approach. This paper first investigates FD-based approximate elimination of harmonic torque as suggested by classical works. This is then extended into a procedure for minimization of low-order pulsating torque components in the FD, which is independent of machine parameters and mechanical load. Furthermore, an SRF-based optimal pulse width modulation (PWM) method is proposed to minimize the low-order harmonic torques, considering the motor parameters and load torque. The two optimal methods are evaluated and compared with sine-triangle (ST) PWM and selective harmonic elimination (SHE) PWM through simulations and experimental studies on a 3.7-kW induction motor drive. The SRF-based optimal PWM results in marginally better performance than the FD-based one. However, the selection of optimal switching angle for any modulation index (M) takes much longer in case of SRF than in case of the FD-based approach. The FD-based optimal solutions can be used as good starting solutions and/or to reasonably restrict the search space for optimal solutions in the SRF-based approach. Both of the FD-based and SRF-based optimal PWM methods reduce the low-order pulsating torque significantly, compared to ST PWM and SHE PWM, as shown by the simulation and experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semiconductor quantum dots have replaced conventional inorganic phosphors in numerous applications. Despite their overall successes as emitters, their impact as laser materials has been severely limited. Eliciting stimulated emission from quantum dots requires excitation by intense short pulses of light typically generated using other lasers. In this Letter, we develop a new class of quantum dots that exhibit gain under conditions of extremely low levels of continuous wave illumination. We observe thresholds as low as 74 mW/cm(2) in lasers made from these materials. Due to their strong optical absorption as well as low lasing threshold, these materials could possibly convert light from diffuse, polychromatic sources into a laser beam.