996 resultados para Power converters
Resumo:
Voxel-based morphometry from conventional T1-weighted images has proved effective to quantify Alzheimer's disease (AD) related brain atrophy and to enable fairly accurate automated classification of AD patients, mild cognitive impaired patients (MCI) and elderly controls. Little is known, however, about the classification power of volume-based morphometry, where features of interest consist of a few brain structure volumes (e.g. hippocampi, lobes, ventricles) as opposed to hundreds of thousands of voxel-wise gray matter concentrations. In this work, we experimentally evaluate two distinct volume-based morphometry algorithms (FreeSurfer and an in-house algorithm called MorphoBox) for automatic disease classification on a standardized data set from the Alzheimer's Disease Neuroimaging Initiative. Results indicate that both algorithms achieve classification accuracy comparable to the conventional whole-brain voxel-based morphometry pipeline using SPM for AD vs elderly controls and MCI vs controls, and higher accuracy for classification of AD vs MCI and early vs late AD converters, thereby demonstrating the potential of volume-based morphometry to assist diagnosis of mild cognitive impairment and Alzheimer's disease.
Resumo:
We consider the asymptotic behaviour of the realized power variation of processes of the form ¿t0usdBHs, where BH is a fractional Brownian motion with Hurst parameter H E(0,1), and u is a process with finite q-variation, q<1/(1¿H). We establish the stable convergence of the corresponding fluctuations. These results provide new statistical tools to study and detect the long-memory effect and the Hurst parameter.
Resumo:
We characterize the value function of maximizing the total discounted utility of dividend payments for a compound Poisson insurance risk model when strictly positive transaction costs are included, leading to an impulse control problem. We illustrate that well known simple strategies can be optimal in the case of exponential claim amounts. Finally we develop a numerical procedure to deal with general claim amount distributions.
Resumo:
A newly completed study commissioned by the Iowa Office of Energy Independence shows increased jobs, tax revenue and economic activity as a result of Iowa Power Fund projects. The analysis is divided into two parts. Part I assesses the specific impacts of projects that have been funded directly. Part II offers an analysis of the long term impacts when projects are successfully replicated.
Resumo:
ISU’s proposed research will (1) develop methods for designing clean and efficient burners for low‐Btu producer gas and medium‐Btu syngas, (2) develop catalysts and flow reactors to produce ethanol from medium‐Btu synthesis gas, and (3) upgrade the BECON gasifier system to enable medium‐Btu syngas production and greatly enhanced capabilities for detailed gas analysis needed by both (1) and (2). This project addresses core development needs to enable grain ethanol industry reduce its natural gas demand and ultimately transition to cellulosic ethanol production.
Resumo:
Power Fund Awarded Projects from the Office of Energy Independence.
Resumo:
Power Fund Awarded Projects from the Office of Energy Independence.
Resumo:
Examination report on the Villisca Municipal Power Plant in Villisca, Iowa for the period January 1, 2013 through December 31, 2013
Resumo:
INTRODUCTION: To compare the power spectral changes of the voluntary surface electromyogram (sEMG) and of the compound action potential (M wave) in the vastus medialis and vastus lateralis muscles during fatiguing contractions. METHODS: Interference sEMG and force were recorded during 48 intermittent 3-s isometric maximal voluntary contractions (MVC) from 13 young, healthy subjects. M waves and twitches were evoked using supramaximal femoral nerve stimulation between the successive MVCs. Mean frequency (F mean), and median frequency were calculated from the sEMG and M waves. Muscle fiber conduction velocity (MFCV) was computed by cross-correlation. RESULTS: The power spectral shift to lower frequencies was significantly greater for the voluntary sEMG than for the M waves (P < 0.05). Over the fatiguing protocol, the overall average decrease in MFCV (~25 %) was comparable to that of sEMG F mean (~22 %), but significantly greater than that of M-wave F mean (~9 %) (P < 0.001). The mean decline in MFCV was highly correlated with the mean decreases in both sEMG and M-wave F mean. CONCLUSIONS: The present findings indicated that, as fatigue progressed, central mechanisms could enhance the relative weight of the low-frequency components of the voluntary sEMG power spectrum, and/or the end-of-fiber (non-propagating) components could reduce the sensitivity of the M-wave spectrum to changes in conduction velocity.
Resumo:
Agreed-upon procedures report on the Villisca Municipal Power Plant for the period January 1, 2014 through December 31, 2014
Resumo:
PURPOSE: This descriptive article illustrates the application of Global Positioning System (GPS) professional receivers in the field of locomotion studies. The technological challenge was to assess the external mechanical work in outdoor walking. METHODS: Five subjects walked five times during 5 min on an athletic track at different imposed stride frequency (from 70-130 steps x min(-1)). A differential GPS system (carrier phase analysis) measured the variation of the position of the trunk at 5 Hz. A portable indirect calorimeter recorded breath-by-breath energy expenditure. RESULTS: For a walking speed of 1.05 +/- 0.11 m x s(-1), the vertical lift of the trunk (43 +/- 14 mm) induced a power of 46.0 +/- 20.4 W. The average speed variation per step (0.15 +/- 0.03 m x s(-1)) produced a kinetic power of 16.9 +/- 7.2 W. As compared with commonly admitted values, the energy exchange (recovery) between the two energy components was low (39.1 +/- 10.0%), which induced an overestimated mechanical power (38.9 +/- 18.3 W or 0.60 W x kg(-1) body mass) and a high net mechanical efficiency (26.9 +/- 5.8%). CONCLUSION: We assumed that the cause of the overestimation was an unwanted oscillation of the GPS antenna. It is concluded that GPS (in phase mode) is now able to record small body movements during human locomotion, and constitutes a promising tool for gait analysis of outdoor unrestrained walking. However, the design of the receiver and the antenna must be adapted to human experiments and a thorough validation study remains to be conducted.