966 resultados para Power circuit
Resumo:
A high-frequency-link micro inverter is proposed with a front-end dual inductor push-pull converter and a grid-connected half-wave cycloconverter. Pulse width modulation is used to control the front-end converter and phase shift modulation is used at the back-end converter to obtain grid synchronized output current. A series resonant circuit and high-frequency transformer are used to interface the front-end and the back-end converters. The operation of the proposed micro-inverter in grid-connected mode is validated using MATLAB/Simpower simulation. Experimental results are provided to further validate the operation.
Resumo:
Animals are often used as symbols in policy debates and media accounts of marine pollution. Images of miserable oil-soaked marine birds and mammals are prominent following high profile oil spills such as the Exxon Valdez, Prestige and Pacific Adventurer incidents. Portrayed as hapless victims, these animal actors are not only cast as powerful symbols of the effects of anthropogenic pollution but also represent an environment in crisis. Animals, like the broader environment, are seen as something which is acted upon. Less attention has been given to the ways in which animals have been cast as either the cause of marine pollution or as having the potential to actively mitigate the potential impacts of anthropogenic marine pollution. This article explores how animals are constructed with respect to vessel-sourced sewage pollution. Through a process of interpretive policy analysis, drawing on media reports and responses to an Australian regulatory review process this study found that, when defending the perceived right to pollute recreational boaters implicated animals such as dogs, fish, turtles, dolphins and seabirds in their pollution discourses. Scapegoating was an important rhetorical feature of claims-making strategies designed to avoid responsibility for changing sewage disposal practices.
Resumo:
This is a musical theatre production with an environmental message addressing a Queensland, Australia tussle between the development of the Galilee Coal Basin and the potential threat to the health of the Great Barrier Reef along the Queensland coast. The drama is enacted by characters representing "goodies" and "baddies" and includes epic poetry, dance, orchestra and drama. The whole performance is enacted in the midst of a post graduate student art exhibition with a coral and coal theme.
Resumo:
The evolutionary advantage of humans is in our unique ability to process stories – we have highly evolved ‘narrative organs.’ Through storytelling, vicarious knowledge, even guarded knowledge, is used to help our species to survive. We learn, regardless of whether the story being told is ‘truth’ or ‘fiction.’ This article discusses how humans place themselves in stories, as both observer and participant, to create a ‘neural balance’ or sweet spot that allows them to be immersed in a story without being entirely threatened by it – and how this involvement in story is the formation of empathy – an empathy that is integral to forging a future humanity. It is through empathy, we argue, that stories have the power to save us.
Resumo:
This article examines journalism students' learning experience that is intercultural, immersive and intensive. Accounts of 'intercultural' experience date back to Herodotus of Halicarnassus; 'immersion' is integral to contemporary practice in language learning; and 'intensive' delivery has been refined to an art by postgraduate business education. Together they can be grouped under the broader pedagogical concept of work-integrated learning (WIL). This article examines two WIL projects that involved field trips by journalism students to Vietnam in 2012 and 2014, and their implications for future WIL initiatives.
Resumo:
When verifying or reverse-engineering digital circuits, one often wants to identify and understand small components in a larger system. A possible approach is to show that the sub-circuit under investigation is functionally equivalent to a reference implementation. In many cases, this task is difficult as one may not have full information about the mapping between input and output of the two circuits, or because the equivalence depends on settings of control inputs. We propose a template-based approach that automates this process. It extracts a functional description for a low-level combinational circuit by showing it to be equivalent to a reference implementation, while synthesizing an appropriate mapping of input and output signals and setting of control signals. The method relies on solving an exists/forall problem using an SMT solver, and on a pruning technique based on signature computation.
Resumo:
Study Design: Comparative analysis Background: Calculations of lower limbs kinetics are limited by floor-mounted force-plates. Objectives: Comparison of hip joint moments, power and mechanical work on the prosthetic limb of a transfemoral amputee calculated by inverse dynamics using either the ground reactions (force-plates) or knee reactions (transducer). Methods: Kinematics, ground reactions and knee reactions were collected using a motion analysis system, two force-plates and a multi-axial transducer mounted below the socket, respectively. Results: The inverse dynamics using ground reactions under-estimated the peaks of hip energy generation and absorption occurring at 63 % and 76 % of the gait cycle (GC) by 28 % and 54 %, respectively. This method over-estimated a phase of negative work at the hip (from 37 %GC to 56 %GC) by 24%. It under-estimated the phases of positive (from 57 %GC to 72 %GC) and negative (from 73 %GC to 98 %GC) work at the hip by 11 % and 58%, respectively. Conclusions: A transducer mounted within the prosthesis has the capacity to provide more realistic kinetics of the prosthetic limb because it enables assessment of multiple consecutive steps and a wide range of activities without issues of foot placement on force-plates. CLINICAL RELEVANCE The hip is the only joint that an amputee controls directly to set in motion the prosthesis. Hip joint kinetics are associated with joint degeneration, low back pain, risks of fall, etc. Therefore, realistic assessment of hip kinetics over multiple gait cycles and a wide range of activities is essential.
Resumo:
Power line inspection is a vital function for electricity supply companies but it involves labor-intensive and expensive procedures which are tedious and error-prone for humans to perform. A possible solution is to use an unmanned aerial vehicle (UAV) equipped with video surveillance equipment to perform the inspection. This paper considers how a small, electrically driven rotorcraft conceived for this application could be controlled by visually tracking the overhead supply lines. A dynamic model for a ducted-fan rotorcraft is presented and used to control the action of an Air Vehicle Simulator (AVS), consisting of a cable-array robot. Results show how visual data can be used to determine, and hence regulate in closed loop, the simulated vehicle’s position relative to the overhead lines.
Resumo:
In the Hebbian postulate, transiently reverberating cellular ensembles can sustain activity to facilitate temporal coincidence detection. Auditory fear conditioning is believed to be formed in the lateral amygdala (LA), by way of plasticity at auditory input synapses on principal neurons. To evaluate the contribution of LA cellular ensembles in the formation of conditioned fear memories, we investigated the LA micro-circuitry by electrophysiological and anatomical approaches. Polysynaptic field potentials evoked in the LA by stimulation of auditory thalamus(MGm/PIN) or auditory cortical (TE3) afferents were analyzed in vitro and in vivo. In vivo, two potentials were identified following stimulation of either pathway. In vitro, these multiple potentials were revealed by adding 75uM Picrotoxin or 30uM Bicuculine, with the first potential peaking at 15-20 ms, followed by two additional potentials at 20 – 25 and 30 – 35 ms, respectively. These data show single stimulation events can result in multiple synchronized excitatory events within the lateral amygdala. In order to determine underlying mechanisms of auditory signal propagation, LA principal neuron axon collateral trajectory patterns and morphology were analyzed. Neurons were found to have local axon collaterals that are topographically organized. Each axon collateral within the LA totaled 14.1 ± 2.73mm, had 29.8 ± 9.1 branch points and 1870.8 ± 1035 boutons (n=9). Electrophysiological and anatomical data show that a network of extensive axon collaterals within the LA may facilitate preservation of auditory afferent signals.
Resumo:
During Pavlovian auditory fear conditioning a previously neutral auditory stimulus (CS) gains emotional significance through pairing with a noxious unconditioned stimulus (US). These associations are believed to be formed by way of plasticity at auditory input synapses on principal neurons in the lateral nucleus of the amygdala (LA). In order to begin to understand how fear memories are stored and processed by synaptic changes in the LA, we have quantified both the entire neural number and the sub-cellular structure of LA principal neurons.We first used stereological cell counting methods on Gimsa or GABA immunostained rat brain. We identified 60,322+/-1408 neurons in the LA unilaterally (n=7). Of these 16,917+/-471 were GABA positive. The intercalated nuclei were excluded from the counts and thus GABA cells are believed to represent GABAergic interneurons. The sub-nuclei of the LA were also independently counted. We then quantified the morphometric properties of in vitro electrophysiologically identified principal neurons of the LA, corrected for shrinkage in xyz planes. The total dendritic length was 9.97+/-2.57mm, with 21+/-4 nodes (n=6). Dendritic spine density was 0.19+/-0.03 spines/um (n=6). Intra-LA axon collaterals had a bouton density of 0.1+/-0.02 boutons/um (n=5). These data begin to reveal the finite cellular and sub-cellular processing capacity of the lateral amygdala, and should facilitate efforts to understand mechanisms of plasticity in LA.
Resumo:
Auditory fear conditioning is dependent on auditory signaling from the medial geniculate (MGm) and the auditory cortex (TE3) to principal neurons of the lateral amygdala (LA). Local circuit GABAergic interneurons are known to inhibit LA principal neurons via fast and slow IPSP's. Stimulation of MGm and TE3 produces excitatory post-synaptic potentials in both LA principal and interneurons, followed by inhibitory post-synaptic potentials. Manipulations of D1 receptors in the lateral and basal amygdala modulate the retrieval of learned association between an auditory CS and foot shock. Here we examined the effects of D1 agonists on GABAergic IPSP's evoked by stimulation of MGm and TE3 afferents in vitro. Whole cell patch recordings were made from principal neurons of the LA, at room temperature, in coronal brain slices using standard methods. Stimulating electrodes were placed on the fiber tracts medial to the LA and at the external capsule/layer VI border dorsal to the LA to activate (0.1-0.2mA) MGm and TE3 afferents respectively. Neurons were held at -55.0 mV by positive current injection to measure the amplitude of the fast IPSP. Changes in input resistance and membrane potential were measured in the absence of current injection. Stimulation of MGm or TE3 afferents produced EPSP's in the majority of principal neurons and in some an EPSP/IPSP sequence. Stimulation of MGm afferents produced IPSP's with amplitudes of -2.30 ± 0.53 mV and stimulation of TE3 afferents produced IPSP's with amplitudes of -1.98 ± 1.26 mV. Bath application of 20μM SKF38393 increased IPSP amplitudes to -5.94 ± 1.62 mV (MGm, n=3) and-5.46 ± 0.31 mV (TE3, n=3). Maximal effect occurred <10mins. A small increase in resting membrane potential and decrease in input resistance were observed. These data suggest that DA modulates both the auditory thalamic and auditory cortical inputs to the LA fear conditioning circuit via local GABAergic circuits. Supported by NIMH Grants 00956, 46516, and 58911.
Resumo:
Wind energy, being the fastest growing renewable energy source in the present world, requires a large number of wind turbines to transform wind energy into electricity. One factor driving the cost of this energy is the reliable operation of these turbines. Therefore, it is a growing requirement within the wind farm community, to monitor the operation of the wind turbines on a continuous basis so that a possible fault can be detected ahead of time. As the wind turbine operates in an environment of constantly changing wind speed, it is a challenging task to design a fault detection technique which can accommodate the stochastic operational behavior of the turbines. Addressing this issue, this paper proposes a novel fault detection criterion which is robust against operational uncertainty, as well as having the ability to quantify severity level specifically of the drivetrain abnormality within an operating wind turbine. A benchmark model of wind turbine has been utilized to simulate drivetrain fault condition and effectiveness of the proposed technique has been tested accordingly. From the simulation result it can be concluded that the proposed criterion exhibits consistent performance for drivetrain faults for varying wind speed and has linear relationship with the fault severity level.
Resumo:
Fast restoration of critical loads and non-black-start generators can significantly reduce the economic losses caused by power system blackouts. In a parallel power system restoration scenario, the sectionalization of restoration subsystems plays a very important role in determining the pickup of critical loads before synchronization. Most existing research mainly focuses on the startup of non-black-start generators. The restoration of critical loads, especially the loads with cold load characteristics, has not yet been addressed in optimizing the subsystem divisions. As a result, sectionalized restoration subsystems cannot achieve the best coordination between the pickup of loads and the ramping of generators. In order to generate sectionalizing strategies considering the pickup of critical loads in parallel power system restoration scenarios, an optimization model considering power system constraints, the characteristics of the cold load pickup and the features of generator startup is proposed in this paper. A bi-level programming approach is employed to solve the proposed sectionalizing model. In the upper level the optimal sectionalizing problem for the restoration subsystems is addressed, while in the lower level the objective is to minimize the outage durations of critical loads. The proposed sectionalizing model has been validated by the New-England 39-bus system and the IEEE 118-bus system. Further comparisons with some existing methods are carried out as well.
Resumo:
Nigerian electricity market is characterized by inadequate electricity generation framework, compounded by lack of timely routine maintenances. This results in significant deterioration in plant electricity output. This study analyzes the productivity changes in the Nigerian power sector. Productivity increased on average in the power sector by the adoption of new technologies from best-practice power plants. The assumption of Hicks neutral technological change is found not to be suitable for the Nigerian power sector. This study finds that the plants are not using their capacity meaningfully, instead, there is a tendency to use labor.