930 resultados para Potassium phosphate
Resumo:
This study investigated the effects of the morphology and physicochemical properties of calcium phosphate (CaP) nanoparticles on osteogenesis. Two types of CaP nanoparticles were compared, namely amorphous calcium phosphate (ACP) nano-spheres (diameter: 9-13 nm) and poorly crystalline apatite (PCA) nano-needles (30-50 nm x 2-4 nm) that closely resemble bone apatite. CaP particles were spin-coated onto titanium discs and implants; they were evaluated in cultured mouse calvarial osteoblasts, as well as after implantation in rabbit femurs. A significant dependence of CaP coatings was observed in osteoblast-related gene expression (Runx2, Col1a1 and Spp1). Specifically, the PCA group presented an up-regulation of the osteospecific genes, while the ACP group suppressed the Runx2 and Col1a1 expression when compared to blank titanium substrates. Both the ACP and PCA groups presented a more than three-fold increase of calcium deposition, as suggested by Alizarin red staining. The removal torque results implied a slight tendency in favour of the PCA group. Different forms of CaP nanostructures presented different biologic differences; the obtained information can be used to optimize surface coatings on biomaterials. © 2013 IOP Publishing Ltd.
Resumo:
Although vast areas in tropical regions have weathered soils with low potassium (K) levels, little is known about the effects of K supply on the photosynthetic physiology of trees. This study assessed the effects of K and sodium (Na) supply on the diffusional and biochemical limitations to photosynthesis in Eucalyptus grandis leaves. A field experiment comparing treatments receiving K (+K) or Na (+Na) with a control treatment (C) was set up in a K-deficient soil. The net CO2 assimilation rates were twice as high in +K and 1.6 times higher in +Na than in the C as a result of lower stomatal and mesophyll resistance to CO2 diffusion and higher photosynthetic capacity. The starch content was higher and soluble sugar was lower in +K than in C and +Na, suggesting that K starvation disturbed carbon storage and transport. The specific leaf area, leaf thickness, parenchyma thickness, stomatal size and intercellular air spaces increased in +K and +Na compared to C. Nitrogen and chlorophyll concentrations were also higher in +K and +Na than in C. These results suggest a strong relationship between the K and Na supply to E. grandis trees and the functional and structural limitations to CO2 assimilation rates. © 2013 John Wiley & Sons Ltd.
Resumo:
Titanium and its alloys are widely used as biomaterials due to their mechanical, chemical and biological properties. To enhance the biocompatibility of titanium alloys, various surface treatments have been proposed. In particular, the formation of titanium oxide nanotubes layers has been extensively examined. Among the various materials for implants, calcium phosphates and hydroxyapatite are widely used clinically. In this work, titanium nanotubes were fabricated on the surface of Ti-7.5Mo alloy by anodization. The samples were anodized for 20 V in an electrolyte containing glycerol in combination with ammonium fluoride (NH4F, 0.25%), and the anodization time was 24 h. After being anodized, specimens were heat treated at 450 °C and 600°C for 1 h to crystallize the amorphous TiO2 nanotubes and then treated with NaOH solution to make them bioactive, to induce growth of calcium phosphate in a simulated body fluid. Surface morphology and coating chemistry were obtained respectively using, field-emission scanning electron microscopy (FEG-SEM), AFM and X-ray diffraction (XRD). It was shown that the presence of titanium nanotubes induces the growth of a sodium titanate nanolayer. During the subsequent invitro immersion in a simulated body fluid, the sodium titanate nanolayer induced the nucleation and growth of nano-dimensioned calcium phosphate. It was possible to observe the formation of TiO2 nanotubes on the surface of Ti-7.5Mo. Calcium phosphate coating was greater in the samples with larger nanotube diameter. These findings represent a simple surface treatment for Ti-7.5Mo alloy that has high potential for biomedical applications. © (2013) Trans Tech Publications, Switzerland.
Resumo:
With the objective of evaluating the effects of N and K concentrations for melon plants, an experiment was carried out from July 1, 2011 to January 3, 2012 in Muzambinho city, Minas Gerais State, Brazil. The Bonus no. 2 was cultivated at the spacing of 1.1 × 0.4. The experimental design was a randomized complete block with three replications in a 4 × 4 factorial scheme with four N concentrations (8, 12, 16, and 20 mmol L-1) and four K concentrations (4, 6, 8, and 10 mmol L-1). The experimental plot constituted of eight plants. It was observed that the leaf levels of N and K, of N-NO3 and of K, and the electrical conductivity (CE) of the substrate increased with the increment of N and K in the nutrients' solution. Substratum pH, in general, was reduced with increments in N concentration and increased with increasing K concentrations in the nutrients' solution. Leaf area increased with increments in N concentration in the nutrients solution. Fertigation with solutions stronger in N (20 mmol L-1) and K (10 mmol L-1) resulted in higher masses for the first (968 g) and the second (951 g) fruits and crop yield (4,425 gm-2). © 2013 Luiz Augusto Gratieri et al.
Resumo:
The term biochar refers to materials with diverse chemical, physical and physicochemical characteristics that have potential as a soil amendment. The purpose of this study was to investigate the P sorption/desorption properties of various slow biochars and one fast pyrolysis biochar and to determine how a fast pyrolysis biochar influences these properties in a degraded tropical soil. The fast pyrolysis biochar was a mixture of three separate biochars: sawdust, elephant grass and sugar cane leaves. Three other biochars were made by slow pyrolysis from three Amazonian tree species (Lacre, Ingá and Embaúba) at three temperatures of formation (400 °C, 500 °C, 600 °C). Inorganic P was added to develop sorption curves and then desorbed to develop desorption curves for all biochar situations. For the slow pyrolysis, the 600 oC biochar had a reduced capacity to sorb P (4-10 times less) relative to those biochars formed at 400 °C and 500 °C. Conversely, biochar from Ingá desorbed the most P. The fast pyrolysis biochar, when mixed with degraded tropical mineral soil, decreased the soil's P sorption capacity by 55% presumably because of the high soluble, inorganic P prevalent in this biochar (909 mg P/kg of biochar). Phosphorus desorption from the fast pyrolysis biochar/soil mixture not only exhibited a common desorption curve but also buffered the soil solution at a value of ca. 0.2 mg/L. This study shows the diversity in P chemistry that can be expected when biochar is a soil amendment and suggests the potential to develop biochars with properties to meet specific objectives. © 2013 British Society of Soil Science.
Resumo:
Background and Aims: Recent studies showed a positive tree response to Na addition in K-depleted tropical soils. Our study aimed to gain insight into the effects of K and Na fertilizations on leaf area components for a widely planted tree species. Methods: Leaf expansion rates, as well as nutrient, polyol and soluble sugar concentrations, were measured from emergence to abscission of tagged leaves in 1-year-old Eucalyptus grandis plantations. Leaf cell size and water status parameters were compared 1 and 2 months after leaf emergence in plots with KCl application (+K), NaCl application (+Na) and control plots (C). Results: K and Na applications enhanced tree leaf area by increasing both leaf longevity and the mean area of individual leaves. Higher cell turgor in treatments +K and +Na than in the C treatment resulting from higher concentrations of osmotica contributed to increasing both palisade cell diameters and the size of fully expanded leaves. Conclusions: Intermediate total tree leaf area in treatment +Na compared to treatments C and +K might result from the capacity of Na to substitute K in osmoregulatory functions, whereas it seemed unable to accomplish other important K functions that contribute to delaying leaf senescence. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
Pós-graduação em Biotecnologia - IQ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Pós-graduação em Agronomia (Irrigação e Drenagem) - FCA
Resumo:
A plant’s nutritional balance can influence its resistance to diseases. In order to evaluate the effect of increasing doses of N and K on the yield and severity of the maize white spot, two experiments were installed in the field, one in the city of Ijaci, Minas Gerais, and the other in the city of Sete Lagoas, Minas Gerais. The experimental delimitation was in randomized blocks with 5 x 5 factorial analysis of variance, and four repetitions. The treatments consisted of five doses of N (20; 40; 80; 150; 190 Kg ha-1 of N in the experiments 1 and 2) and five doses of K (15; 30; 60; 120; 180 Kg ha-1 of K in experiment 1 and 8.75; 17.5; 35; 50; 100 Kg ha-1 of K in experiment 2). The susceptible cultivar 30P70 was planted in both experiments. The plot consisted of four rows 5 meters long, with a useful area consisting of two central rows 3 meters each. Evaluations began 43 days after emergence (DAE) in the first experiment and 56 DAE in the second one. There was no significant interaction between doses of N and K and the disease progress. The effect was only observed for N. The K did not influence the yield and the severity of the disease in these experiments. Bigger areas below the severity progress curve of the white spot and better yield were observed with increasing doses of N. Thus, with increasing doses of N, the white spot increased and also did the yield.
Resumo:
The presence of contaminants, such as phosphate, in biodiesel, has several drawbacks for instance: current engines perform poorly, fuel tanks deteriorate, catalytic conversion is damaged, and particles emission is increased. Therefore, biodiesel quality control is extremely important for biodiesel acceptance and commercialization worldwide. In this context, a bare glassy carbon electrode (GCE) and another chemically modified electrode with iron hexacyanoferrate (Prussian Blue – PB) were developed for determination of phosphate in biodiesel. The LODs of 6.44 and 1.19 mg kg−1, and LOQs of 21.43 and 3.97 mg kg−1 were obtained for the bare GCE and the PB-modified GCE, respectively. The methodology was employed for analysis of Brazilian biodiesel samples, and it led to satisfactory results, demonstrating its potential application for biodiesel quality control. Additionally, recovery and interference tests were conducted, which revealed that the developed methods are suitable for analysis of phosphate in biodiesel samples.
Resumo:
With the objective of evaluating the response of baru (Dipteryx alata Vog.) to nutrient limitation and to the different levels of fertilization, seven experiments were conducted. Experiment 1: Nutritional limitation in greenhouse. We employed 12 treatments in a completely randomized design with eight replicates. Experiment 2: Levels of liming and P in greenhouse. The experimental design was completely randomized in a factorial scheme with four levels of liming (V23.2% (natural soil), V45%, V65% and V85%) and four doses of P (0, 100, 300 and 500 mg kg -1 of P). Experiment 3: Doses of N in greenhouse. We used seven treatments (0, 75, 150, 225, 300, 375 and 450 mg kg -1 of N) in a completely randomized design. Experiment 4: Doses of K in greenhouse. We used seven treatments (0, 75, 150, 225, 300, 375 and 450 mg kg -1 ) in a completely randomized design. Experiment 5: Levels of liming under field conditions. We used four treatments (V6.7% (natural soil), V35%, V55% and V75%) in a randomized blocks design. Experiment 6: doses of P under field conditions. We used five treatments (0, 23.67, 53.34, 106.67 and 213.36 kg ha -1 of P 2O5) in a randomized blocks design. Experiment 7: Doses of N under field conditions. We used five treatments (0, 30, 60, 120 and 240 kg ha -1 of N) in Latin square. In greenhouse, the evaluations were conducted at eight months (for experiments 1 and 2) and 12 months (for experiments 3 and 4) after seeding, when the measurements of height and root collar diameter of the seedlings. Subsequently, the plants were harvested and separated into shoot and root system, for weighing and evaluating dry biomass gain. In the field, the evaluations were conducted at six, 12, 18, 24 and 30 months (for experiments 5 and 6) and at six, 12 and 18 months (for experiment 7). In these experiments, we evaluated the survival of the seedlings, height of the plants and diameter of the stem at soil height. The data obtained were submitted to analysis of variance, mean tests and regression analysis. In conclusion, during the phase of seedling formation, the species is little demanding in S and B, negatively responds to liming, positively responds to phosphate fertilization and does not respond to nitrogen and potassium fertilization. In the field, in general, the species does not respond to the application of P or to liming, and is negatively influenced by the application of elevated doses of nitrogen.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)