995 resultados para Pore forming


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wear is the principal cause of tool failure in most sheet metal forming processes. It is well known that the contact pressure between the blank and the tool has a large influence on the wear of the tool, and hence the tool life. This investigation utilises the finite element method to analyse the contact pressure distribution over the die radius for a particular deep drawing process. Furthermore, the evolution of the predicted contact pressure distribution throughout the entire stroke of the punch is also examined. It was found that the majority of the process shows a steady state pressure distribution, with two characteristic peaks over the die radius, at the beginning and end of the sheet contact area. Interestingly, the initial transient contact pressure response showed extremely high localised peak pressures; more than twice that of the steady state peaks. Results are compared to wear reported in the literature, during similar experimental deep drawing processes. Finally, the significance and effect of the results on wear and wear-testing techniques are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pure elemental powder mixtures with the compositions of Mg65NixSi35x (x = 10, 20, 25, 33 at.%) were subject to high-energy ball mill, and the structures of the mixtures at different intervals of milling were characterised by X-ray diffraction (XRD). The compositional dependency of the glass forming ability (GFA) in Mg–Ni–Si system was evaluated based on the experimental results and the theoretical calculation. The compositional dependency of GFA in Mg–Ni–Si system can be understood well by comparing the enthalpies of the crystalline and amorphous phases based on the Miedema's theory for the formation enthalpy of alloys. Increasing the Ni/Mg ratio and/or decreasing Si content can improve the amorphous formability. The calculation results might be of great help in optimising the composition with high GFA in Mg–Ni–Si system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For a given sheet metal forming process, an accurate determination of the contact pressure distribution experienced is an essential step towards the estimation of tool life. This investigation utilizes finite element (FE) analysis to determine the evolution and distribution of contact pressure over the die radius, throughout the duration of a channel forming process. It was found that a typical two-peak steady-state contact pressure response exists for the majority of the process. However, this was preceded by a transient  response, which produced extremely large and localized contact pressures. Notably, it was found that the peak transient contact pressure was more than double the steady-state peak. These contact pressure results may have a significant influence on the tool wear response and therefore impact current wear testing and prediction techniques. Hence, an investigation into the validity of the predicted contact pressure was conducted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of temperature on the forming behavior of an aluminum/polypropylene/aluminum (APA) sandwich sheet was studied. Shear and tensile tests were performed to determine the mechanical properties of the laminate and the component materials as a function of process temperature. The forming limit diagram (FLD) of the laminate was established for two different temperatures, and its springback behavior was examined in four-point bend and channel bend tests. Cup forming tests were performed at various test temperatures to determine the limiting drawing ratio (LDR) and the tendency for wrinkling at these temperatures. Although there was only a minor influence of temperature on the mechanical properties and the FLD values of the laminate, the bend test results reveal that springback can be reduced by forming at higher temperature. The decreasing strength of the core material with rising process temperature led to an increased tendency of the laminate to wrinkle in the heated cup drawing tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A knowledge based optimism technique has been developed to predict solutions for quality issues found in an initial draw die design. Post processing of the initial design yields all the features applying forces, and major quality issues. Using the geometric relationship between the two, a knowledge-base is interrogated to determine the possible corrective actions. These actions are then passed through a fast semi-analytical model to determine the level of change required. Results from a 2D forming are presented to highlight the advantage of the new algorithms over current optimisation techniques.