698 resultados para Polynomials.
Resumo:
MSC 2010: 41A10, 41A15, 41A25, 41A36
Resumo:
MSC 2010: 30C10
Resumo:
MSC 2010: 33C45, 40G05
Resumo:
2000 Mathematics Subject Classification: Primary: 11D09, 11A55, 11C08, 11R11, 11R29; Secondary: 11R65, 11S40; 11R09.
Resumo:
MSC 2010: 11B83, 05A19, 33C45
Resumo:
2000 Mathematics Subject Classification: 15A29.
Resumo:
2010 Mathematics Subject Classification: 33C45, 40G05.
Resumo:
With the progress of computer technology, computers are expected to be more intelligent in the interaction with humans, presenting information according to the user's psychological and physiological characteristics. However, computer users with visual problems may encounter difficulties on the perception of icons, menus, and other graphical information displayed on the screen, limiting the efficiency of their interaction with computers. In this dissertation, a personalized and dynamic image precompensation method was developed to improve the visual performance of the computer users with ocular aberrations. The precompensation was applied on the graphical targets before presenting them on the screen, aiming to counteract the visual blurring caused by the ocular aberration of the user's eye. A complete and systematic modeling approach to describe the retinal image formation of the computer user was presented, taking advantage of modeling tools, such as Zernike polynomials, wavefront aberration, Point Spread Function and Modulation Transfer Function. The ocular aberration of the computer user was originally measured by a wavefront aberrometer, as a reference for the precompensation model. The dynamic precompensation was generated based on the resized aberration, with the real-time pupil diameter monitored. The potential visual benefit of the dynamic precompensation method was explored through software simulation, with the aberration data from a real human subject. An "artificial eye'' experiment was conducted by simulating the human eye with a high-definition camera, providing objective evaluation to the image quality after precompensation. In addition, an empirical evaluation with 20 human participants was also designed and implemented, involving image recognition tests performed under a more realistic viewing environment of computer use. The statistical analysis results of the empirical experiment confirmed the effectiveness of the dynamic precompensation method, by showing significant improvement on the recognition accuracy. The merit and necessity of the dynamic precompensation were also substantiated by comparing it with the static precompensation. The visual benefit of the dynamic precompensation was further confirmed by the subjective assessments collected from the evaluation participants.
Resumo:
This research work aims to make a study of the algebraic theory of matrix monic polynomials, as well as the definitions, concepts and properties with respect to block eigenvalues, block eigenvectors and solvents of P(X). We investigte the main relations between the matrix polynomial and the Companion and Vandermonde matrices. We study the construction of matrix polynomials with certain solvents and the extention of the Power Method, to calculate block eigenvalues and solvents of P(X). Through the relationship between the dominant block eigenvalue of the Companion matrix and the dominant solvent of P(X) it is possible to obtain the convergence of the algorithm for the dominant solvent of the matrix polynomial. We illustrate with numerical examples for diferent cases of convergence.
Resumo:
An experimental setup to measure the three-dimensional phase-intensity distribution of an infrared laser beam in the focal region has been presented. It is based on the knife-edge method to perform a tomographic reconstruction and on a transport of intensity equation-based numerical method to obtain the propagating wavefront. This experimental approach allows us to characterize a focalized laser beam when the use of image or interferometer arrangements is not possible. Thus, we have recovered intensity and phase of an aberrated beam dominated by astigmatism. The phase evolution is fully consistent with that of the beam intensity along the optical axis. Moreover, this method is based on an expansion on both the irradiance and the phase information in a series of Zernike polynomials. We have described guidelines to choose a proper set of these polynomials depending on the experimental conditions and showed that, by abiding these criteria, numerical errors can be reduced.
Resumo:
Open Access funded by Medical Research Council Acknowledgment The work reported here was funded by a grant from the Medical Research Council, UK, grant number: MR/J013838/1.
Resumo:
We prove that a random Hilbert scheme that parametrizes the closed subschemes with a fixed Hilbert polynomial in some projective space is irreducible and nonsingular with probability greater than $0.5$. To consider the set of nonempty Hilbert schemes as a probability space, we transform this set into a disjoint union of infinite binary trees, reinterpreting Macaulay's classification of admissible Hilbert polynomials. Choosing discrete probability distributions with infinite support on the trees establishes our notion of random Hilbert schemes. To bound the probability that random Hilbert schemes are irreducible and nonsingular, we show that at least half of the vertices in the binary trees correspond to Hilbert schemes with unique Borel-fixed points.
Resumo:
We consider Sklyanin algebras $S$ with 3 generators, which are quadratic algebras over a field $\K$ with $3$ generators $x,y,z$ given by $3$ relations $pxy+qyx+rzz=0$, $pyz+qzy+rxx=0$ and $pzx+qxz+ryy=0$, where $p,q,r\in\K$. this class of algebras has enjoyed much attention. In particular, using tools from algebraic geometry, Feigin, Odesskii \cite{odf}, and Artin, Tate and Van Den Bergh, showed that if at least two of the parameters $p$, $q$ and $r$ are non-zero and at least two of three numbers $p^3$, $q^3$ and $r^3$ are distinct, then $S$ is Artin--Schelter regular. More specifically, $S$ is Koszul and has the same Hilbert series as the algebra of commutative polynomials in 3 indeterminates (PHS). It has became commonly accepted that it is impossible to achieve the same objective by purely algebraic and combinatorial means like the Groebner basis technique. The main purpose of this paper is to trace the combinatorial meaning of the properties of Sklyanin algebras, such as Koszulity, PBW, PHS, Calabi-Yau, and to give a new constructive proof of the above facts due to Artin, Tate and Van Den Bergh. Further, we study a wider class of Sklyanin algebras, namely
the situation when all parameters of relations could be different. We call them generalized Sklyanin algebras. We classify up to isomorphism all generalized Sklyanin algebras with the same Hilbert series as commutative polynomials on
3 variables. We show that generalized Sklyanin algebras in general position have a Golod–Shafarevich Hilbert series (with exception of the case of field with two elements).
Resumo:
We consider a second-order variational problem depending on the covariant acceleration, which is related to the notion of Riemannian cubic polynomials. This problem and the corresponding optimal control problem are described in the context of higher order tangent bundles using geometric tools. The main tool, a presymplectic variant of Pontryagin’s maximum principle, allows us to study the dynamics of the control problem.
Resumo:
We present a summary of the series representations of the remainders in the expansions in ascending powers of t of 2/(et+1)2/(et+1) , sech t and coth t and establish simple bounds for these remainders when t>0t>0 . Several applications of these expansions are given which enable us to deduce some inequalities and completely monotonic functions associated with the ratio of two gamma functions. In addition, we derive a (presumably new) quadratic recurrence relation for the Bernoulli numbers Bn.