901 resultados para Poly(ethylene-co-propylene), Dioctylphthalate, y-Radiation, FTIR, XPS
Resumo:
Silicon-based polymers and oxides may be formed when vapours of oxygen-containing organosilicone compounds are exposed to energetic electrons drawn from a hot filament by a bias potential applied to a second electrode in a controlled atmosphere in a vacuum chamber. As little deposition occurs in the absence of the bias potential, electron impact fragmentation is the key mechanism in film fabrication using electron-emission enhanced chemical vapour deposition (EEECVD). The feasibility of depositing amorphous hydrogenated carbon films also containing silicon from plasmas of tetramethylsilane or hexamethyldisiloxane has already been shown. In this work, we report the deposition of diverse films from plasmas of tetraethoxysilane (TEOS)-argon mixtures and the characterization of the materials obtained. The effects of changes in the substrate holder bias (Vs) and of the proportion of TEOS in the mixture (XT) on the chemical structure of the films are examined by infrared-reflection absorption spectroscopy (IRRAS) at near-normal and oblique incidence using unpolarised and p-polarised, light, respectively. The latter is particularly useful in detecting vibrational modes not observed when using conventional near-normal incidence. Elemental analyses of the film were carried out by X-ray photoelectron spectroscopy (XPS), which was also useful in complementary structural investigations. In addition, the dependencies of the deposition rate on Vs and XT are presented. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This study evaluates the application of denim fiber scraps as a precursor for the synthesis of adsorbents for water treatment via pyrolysis and their application in water defluoridation. The best pyrolysis conditions for the synthesis of this novel adsorbent have been identified and a metal doping route with different salts of Al3 +, La3 + and Fe3 + was proposed to improve its fluoride adsorption behavior. Different spectroscopic and microscopic techniques (i.e., FTIR, XPS, XRF, SEM) were used to characterize the precursor and adsorbents, and to analyze the surface interactions involved in the fluoride removal mechanism. Experimental results showed that these adsorbents were effective for fluoride adsorption showing uptakes up to 4.25 mg/g. The Si-O–metal–F interactions appear to be highly relevant for the fluoride removal. This study highlights the potential of denim textile waste as a raw material for the production of added-value products, thus minimizing their associated disposal cost. It also shows the performance of denim textile waste as a precursor of adsorbents for addressing relevant environmental concerns such as fluoride pollution.
Resumo:
The effect of postcure high energy (gamma), ultraviolet (UV) and thermal treatment on the properties of polyester-melamine clearcoats of a range of compositions has been investigated. Two initial cure conditions were used, of which one was '' optimally '' cured and the other undercured. It was found that postcure treatments, particularly gamma and UV, led to coatings of similar mechanical and thermal properties irrespective of initial cure, although the change in properties on postcure treatment was greater for the under-cured samples. The results were interpreted in terms of the effect of the treatments on the structure of the crosslinked matrices. The study suggests the possibility of the development of a dual-cure process for polyester-melamines, whereby cure optimization and property improvement can be achieved. This could also be used to '' correct '' for small variations in thermal cure levels brought about by adventitious online fluctuations in cure oven conditions.
Resumo:
A series of insoluble heteropolytungstate (H3PW12O40 HPW) salts, CsxH3−xPW12O40 (x=0.9–3x=0.9–3), were synthesized and characterized using a range of bulk and surface sensitive probes including N2 porosimetry, powder XRD, FTIR, XPS, 31P MAS NMR, and NH3 calorimetry. Materials with Cs content in the range x=2.0–2.7x=2.0–2.7 were composed of dispersed crystallites with surface areas ∼100 m2 g−1 and high Brönsted acid strengths [ΔH0ads(NH3)=−150 kJmol−1], similar to the parent heteropolyacid. The number of accessible surface acid sites probed by α -pinene isomerization correlated well with those determined by NH3 adsorption calorimetry and surface area measurements. CsxH3−xPW12O40 were active toward the esterification of palmitic acid and transesterification of tributyrin, important steps in fatty acid and ester processing for biodiesel synthesis. Optimum performance occurs for Cs loadings of x=2.0–2.3x=2.0–2.3, correlating with the accessible surface acid site density. These catalysts were recoverable with no leaching of soluble HPW.
Resumo:
Ethylene-propylene rubber (EPR) functionalised with glycidyl methacrylate (GMA) (f-EPR) during melt processing in the presence of a co-monomer, such as trimethylolpropane triacrylate (Tris), was used to promote compatibilisation in blends of polyethylene terephthalate (PET) and f-EPR, and their characteristics were compared with those of PET/f-EPR reactive blends in which the f-EPR was functionalised with GMA via a conventional free radical melt reaction (in the absence of a co-monomer). Binary blends of PETand f-EPR (with two types of f-EPR prepared either in presence or absence of the co-monomer) with various compositions (80/20, 60/40 and 50/50 w/w%) were prepared in an internal mixer. The blends were evaluated by their rheology (from changes in torque during melt processing and blending reflecting melt viscosity, and their melt flow rate), morphology scanning electron microscopy (SEM), dynamic mechanical properties (DMA), Fourier transform infrared (FTIR) analysis, and solubility (Molau) test. The reactive blends (PET/f-EPR) showed a marked increase in their melt viscosities in comparison with the corresponding physical (PET/EPR) blends (higher torque during melt blending), the extent of which depended on the amount of homopolymerised GMA (poly-GMA) present and the level of GMA grafting in the f-EPR. This increase was accounted for by, most probably, the occurrence of a reaction between the epoxy groups of GMA and the hydroxyl/carboxyl end groups of PET. Morphological examination by SEM showed a large improvement of phase dispersion, indicating reduced interfacial tension and compatibilisation, in both reactive blends, but with the Tris-GMA-based blends showing an even finer morphology (these blends are characterised by absence of poly-GMA and presence of higher level of grafted GMA in its f-EPR component by comparison to the conventional GMA-based blends). Examination of the DMA for the reactive blends at different compositions showed that in both cases there was a smaller separation between the glass transition temperatures compared to their position in the corresponding physical blends, which pointed to some interaction or chemical reaction between f-EPR and PET. The DMA results also showed that the shifts in the Tgs of the Tris-GMA-based blends were slightly higher than for the conventional GMA-blends. However, the overall tendency of the Tgs to approach each other in each case was found not to be significantly different (e.g. in a 60/40 ratio the former blend shifted by up to 4.5 °C in each direction whereas in the latter blend the shifts were about 3 °C). These results would suggest that in these blends the SEM and DMA analyses are probing uncorrelatable morphological details. The evidence for the formation of in situ graft copolymer between the f-EPR and PET during reactive blending was clearly illustrated from analysis by FTIR of the separated phases from the Tris-GMA-based reactive blends, and the positive Molau test pointed out to graft copolymerisation in the interface. A mechanism for the formation of the interfacial reaction during the reactive blending process is proposed.
Resumo:
Hydrogels have been prepared by free-radical solution copolymerization of acrylamide and sodium acrylate (NaAc), with molar ratio ranging from 25/75 to 80/20, respectively, using methylene bisacrylamide as the crosslinking agent. A FTIR spectroscopy procedure to determine the acrylate/acrylamide ratio in these hydrogels was proposed based on absorbance at 1410 cm-1 (nCOO-) and 2940 cm-1 (nCH and nCH2). A straight line with a good linear correlation coefficient (0.998) was obtained by plotting the acrylate content (Ac%) versus relative absorbance (Arel = A1410/A2940). Results were confirmed by the amount of sodium cation released in acid medium determined by atomic absorption spectrometry.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Glycidyl methacrylate (GMA) was grafted on ethylene-propylene copolymer during melt processing with peroxide initiation in the presence and absence of a more reactive comonomer (coagent), trimethylolpropane triacrylate (Tris). The characteristics of the grafting systems in terms of the grafting reaction yield and the nature and extent of the competing side reactions were examined. The homopolymers of GMA (Poly-GMA) and Tris (Poly-Tris) and the GMA-Tris copolymer (GMA-co-Tris) were synthesized and characterized. In the absence of the coagent, high levels of poly-GMA, which constituted the major competing reaction, was formed, giving rise to low GMA grafting levels. Further, this grafting system resulted in a high extent of gel formation and polymer crosslinking due to the high levels of peroxide needed to achieve optimum GMA grafting and a consequent large drop in the melt index (increased viscosity) of the polymer. In the presence of the coagent, however, the grafting system required much lower peroxide concentration, by almost an order of magnitude, to achieve the optimum grafting yield. The coagent-containing GMA-grafting system has also resulted in a drastic reduction in the extent of all competing reactions, and in particular, the GMA homopolymerization, leading to improved GMA grafting efficiency with no detectable gel or crosslinking. The mechanisms of the grafting reactions, in the presence and absence of Tris, are proposed.
Resumo:
The diffusion of water into a series of hydroxyethyl methacrylate, HEMA, copolymers with tetrahydrofurfuryl methacrylate, THFMA, has been studied over a range of copolymer compositions using NMR imaging analyses. For polyHEMA the diffusion was found to be consistent with a Fickian model. The mass diffusion coefficient of water in polyHEMA at 37 degreesC was determined from the profiles of the diffusion front to be 1.5 x 10(-11) m(2) s(-1), which is less than the value based upon mass uptake, 2.0 x 10(-11) m(2) s(-1). The profiles of the water diffusion front obtained from the NMR images showed that stress was induced at the interface between the rubbery and glassy regions which led to formation of small cracks in this region of the glassy matrix of polyHEMA and its copolymers with mole fractions of HEMA greater than 0.6. Water was shown to be able to enter these cracks forming water pools. For copolymers of HEMA and THFMA with mole fractions of HEMA less than 0.6 the absence of cracks was attributed to the ability of the THFMA sequences to undergo stress relaxation by creep.
Resumo:
The radicals formed on gamma-radiolysis of a series of copolymers of methacrylic acid and acrylonitrile have been investigated by ESR spectroscopy. This series of copolymers spanned the full composition range and the study was carried out at 77 K and ambient temperature. The radicals formed in the copolymers at 77 and 303 K were found to be similar to those found in the two homopolymers, but in the intermediate composition range the presence of acrylonitrile propagation radicals was also detected. These radicals were not observed to be formed in significant quantities on the radiolysis of polyacrylonitrile. They are believed to result from a scission of the main chain at methacrylic acid/acrylonitrile diad sequences following loss of the methacrylic acid carboxyl group. At 77 K, the copolymers with high methacrylic acid contents were found to be more sensitive to radical formation than the methacrylic acid homopolymer, but this enhanced sensitivity was not evident at ambient temperature, where the G-values for radical formation for the copolymers were slightly less than the values for the homopolymers. (C) 2003 Society of Chemical Industry.
Resumo:
Separator membranes based on poly(vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE) were prepared by solvent casting technique based on its phase diagram in N,Ndimethylformamide (DMF) solvent. The microstructure of the PVDF-CTFE separator membranes depends on the initial position (temperature and concentration) of the solution in the phase diagram of the PVDF-CTFE/DMF system. A porous microstructure is achieved for PVDF-CTFE membranes with solvent evaporation temperature up to 50 ºC for a polymer/solvent relative concentration of 20 wt%. The ionic conductivity of the separator depends on the degree of porosity and electrolyte uptake, the highest room temperature value being 1.5 mS.cm-1 for the sample with 20 wt% of polymer concentration and solvent evaporation temperature at 25 ºC saturated with 1 mol L-1 lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) in propylene carbonate (PC). This PVDF-CTFE separator membrane in Li/C-LiFePO4 half-cell shows good cyclability and rate capability, showing a discharge value after 50 cycles of 92 mAh.g-1 at 2 C, which is still 55% of the theoretical value. PVDF-CTFE separators are thus excellent candidates for high-power and safety lithium-ion batteries applications.
Resumo:
Poly(vinylidene fluoride-co-chlorotrifluoroethylene), PVDF-CTFE, membranes were prepared by solven casting from dimethylformamide, DMF. The preparation conditions involved a systematic variation of polymer/solvent ratio and solvent evaporation temperature. The microstructural variations of the PVDF-CTFE membranes depend on the different regions of the PVDF-CTFE/DMF phase diagram, explained by the Flory-Huggins theory. The effect of the polymer/solvent ratio and solvent evaporation temperature on the morphology, degree of porosity, β-phase content, degree of crystallinity, mechanical, dielectric and piezoelectric properties of the PVDF-CTFE polymer were evaluated. In this binary system, the porous microstructure is attributed to a spinodal decomposition of the liquid-liquid phase separation. For a given polymer/solvent ratio, 20 wt%, and higher evaporation solvent temperature, the β-phase content is around 82% and the piezoelectric coefficient, d33, is - 4 pC/N.
Resumo:
Cyclosporine-A-loaded PLGA implants were developed intended for ocular route. Implants were prepared using solvent extraction/evaporation technique followed by casting of the cake into rods in a heated surface. XRD patterns showed that cyclosporine-A was completely incorporated into PLGA. FTIR and DSC results indicated alterations on drug molecular conformation aiming to reach the most stable thermodynamic conformation at polymer/drug interface. Implants provided controlled/sustained in vitro release of the drug. During the first 7 weeks, the drug release was controlled by the diffusion of the cyclosporine-A; and between 7-23 week period, the drug diffusion and degradation of PLGA controlled the drug release.
Resumo:
We report the single-step derivatization reaction of a biopolymer based onL -lysine with D -biotin analogs:Co -poly(L -lysine)-graft-(ε-N -[X-D-biotinyl]-L -lysine) (PLL-X-Biotin). The valeric acid carboxylate of D -biotin is activated to an NHS ester for direct modification of amine groups in proteins and other macromolecules. NHS esters react by nucleophilic attack of an amine in the carbonyl group, releasing the NHS group, and forming a stable amide linkage. NHS-X-Biotin is the simplest biotinylation reagent commercially available. In contrast withD -biotin, it has a longer spacer arm off the valeric acid side chain allowing better binding potential for avidin or streptavidin probes. Derivatization of poly(L -lysine) (PLL) with NHS-X-Biotin led to a copolymer PLL-X-Biotin. UV-Visible, IR-FT and 1H NMR characteristics derived from synthesis are briefly discussed.
Resumo:
Development and selection of an ideal scaffold is of importance for tissue engineering. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) is a biocompatible bioresorbable copolymer that belongs to the polyhydroxyalkanoate family. Because of its good biocompatibility, PHBHHx has been widely used as a cell scaffold for tissue engineering. This review focuses on the utilization of PHBHHx-based scaffolds in tissue engineering. Advances in the preparation, modification, and application of PHBHHx scaffolds are discussed.