941 resultados para Poa alpina, transplantation, altitudinal gradient, genetic diversity, phenotypic plasticity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to evaluate the catabolic gene diversity for the bacterial degradation of aromatic hydrocarbons in anthropogenic dark earth of Amazonia (ADE) and their biochar (BC). Functional diversity analyses in ADE soils can provide information on how adaptive microorganisms may influence the fertility of soils and what is their involvement in biogeochemical cycles. For this, clone libraries containing the gene encoding for the alpha subunit of aromatic ring-hydroxylating dioxygenases (alpha-A RH D bacterial gene) were constructed, totaling 800 clones. These libraries were prepared from samples of an ADE soil under two different land uses, located at the Caldeirao Experimental Station secondary forest (SF) and agriculture (AG)-, and the biochar (SF_BC and AG_BC, respectively). Heterogeneity estimates indicated greater diversity in BC libraries; and Venn diagrams showed more unique operational protein clusters (OPC) in the SF_BC library than the ADE soil, which indicates that specific metabolic processes may occur in biochar. Phylogenetic analysis showed unidentified dioxygenases in ADE soils. Libraries containing functional gene encoding for the alpha subunit of the aromatic ring-hydroxylating dioxygenases (ARHD) gene from biochar show higher diversity indices than those of ADE under secondary forest and agriculture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Musa germplasm collection at Embrapa Cassava and Fruits detains accessions from different sections of the Musa genus. The objective of the present study was to identify and morphologically characterize banana accessions from the banana germplasm with ornamental potential, as well as to quantify their genetic variability; and identify possible progenitors to be used in breeding aiming to achieve ornamental crossbreeds. The accessions were evaluated with the use of 32 morphological descriptors. Then, they were the following grouped into categories: landscape plants, cut flower, potted plants, and male inflorescence minifruits. The pre-selected accessions presented great genetic variability and ornamental potential for different uses. The accessions of the Rhodochlamys and Callimusa sections were selected to be used as landscape plants, cut flowers, potted plants, male inflorescence and minifruits. Most of the diploids from the Eumusa section evaluated in this study are indicated for the production of ornamental minifruits, except for 'Lidi' and Cici, which can also be indicated as landscape plants. The BB diploids have great potential for the use of the male inflorescence in floral arrangements, and did not offer any other indication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Documenting the Neotropical amphibian diversity has become a major challenge facing the threat of global climate change and the pace of environmental alteration. Recent molecular phylogenetic studies have revealed that the actual number of species in South American tropical forests is largely underestimated, but also that many lineages are millions of years old. The genera Phyzelaphryne (1 sp.) and Adelophryne (6 spp.), which compose the subfamily Phyzelaphryninae, include poorly documented, secretive, and minute frogs with an unusual distribution pattern that encompasses the biotic disjunction between Amazonia and the Atlantic forest. We generated >5.8 kb sequence data from six markers for all seven nominal species of the subfamily as well as for newly discovered populations in order to (1) test the monophyly of Phyzelaphryninae, Adelophryne and Phyzelaphryne, (2) estimate species diversity within the subfamily, and (3) investigate their historical biogeography and diversification. Phylogenetic reconstruction confirmed the monophyly of each group and revealed deep subdivisions within Adelophryne and Phyzelaphryne, with three major clades in Adelophryne located in northern Amazonia, northern Atlantic forest and southern Atlantic forest. Our results suggest that the actual number of species in Phyzelaphryninae is, at least, twice the currently recognized species diversity, with almost every geographically isolated population representing an anciently divergent candidate species. Such results highlight the challenges for conservation, especially in the northern Atlantic forest where it is still degraded at a fast pace. Molecular dating revealed that Phyzelaphryninae originated in Amazonia and dispersed during early Miocene to the Atlantic forest. The two Atlantic forest clades of Adelophryne started to diversify some 7 Ma minimum, while the northern Amazonian Adelophryne diversified much earlier, some 13 Ma minimum. This striking biogeographic pattern coincides with major events that have shaped the face of the South American continent, as we know it today. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background N-acetyltransferase type 2 (Nat2) is a phase II drug- metabolizing enzyme that plays a key role in the bioactivation of aromatic and heterocyclic amines. Its relevance in drug metabolism and disease susceptibility remains a central theme for pharmacogenetic research, mainly because of its genetic variability among human populations. In fact, the evolutionary and ethnic-specific SNPs on the NAT2 gene remain a focus for the potential discoveries in personalized drug therapy and genetic markers of diseases. Despite the wide characterization of NAT2 SNPs frequency in established ethnic groups, little data are available for highly admixed populations. In this context, five common NAT2 SNPs (G191A, C481T, G590A, A803G and G857A) were investigated in a highly admixed population comprised of Afro-Brazilians, Whites, and Amerindians in northeastern Brazil. Thus, we sought to determine whether the distribution of NAT2 polymorphism is different among these three ethnic groups. Results Overall, there were no statistically significant differences in the distribution of NAT2 polymorphism when Afro-Brazilian and White groups were compared. Even the allele frequency of 191A, relatively common in African descendents, was not different between the Afro-Brazilian and White groups. However, allele and genotype frequencies of G590A were significantly higher in the Amerindian group than either in the Afro-Brazilian or White groups. Interestingly, a haplotype block between G590A and A803G was verified exclusively among Amerindians. Conclusions Our results indicate that ethnic admixture might contribute to a particular pattern of genetic diversity in the NAT2 gene and also offer new insights for the investigation of possible new NAT2 gene-environment effects in admixed populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous microsatellite analyses of sympatric populations of Plasmodium vivax and Plasmodium falciparum in Brazil revealed higher diversity in the former species. However, it remains unclear whether regional species-specific differences in prevalence and transmission levels might account for these findings. Here, we examine sympatric populations of P. vivax (n = 87) and P. falciparum (n = 164) parasites from Pursat province, Western Cambodia, where both species are similarly prevalent. Using 10 genome-wide microsatellites for P. falciparum and 13 for P. vivax, we found that the P. vivax population was more diverse than the sympatric P. falciparum population (average virtual heterozygosity [HE], 0.87 vs. 0.66, P = 0.003), with more multiple-clone infections (89.6% vs. 47.6%) and larger mean number of alleles per marker (16.2 vs. 11.1, P = 0.07). Both populations showed significant multi-locus linkage disequilibrium suggestive of a predominantly clonal mode of parasite reproduction. The higher microsatellite diversity found in P. vivax isolates, compared to sympatric P. falciparum isolates, does not necessarily result from local differences in transmission level and may reflect differences in population history between species or increased mutation rates in P. vivax.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the recent years TNFRSF13B coding variants have been implicated by clinical genetics studies in Common Variable Immunodeficiency (CVID), the most common clinically relevant primary immunodeficiency in individuals of European ancestry, but their functional effects in relation to the development of the disease have not been entirely established. To examine the potential contribution of such variants to CVID, the more comprehensive perspective of an evolutionary approach was applied in this study, underling the belief that evolutionary genetics methods can play a role in dissecting the origin, causes and diffusion of human diseases, representing a powerful tool also in human health research. For this purpose, TNFRSF13B coding region was sequenced in 451 healthy individuals belonging to 26 worldwide populations, in addition to 96 control, 77 CVID and 38 Selective IgA Deficiency (IgAD) individuals from Italy, leading to the first achievement of a global picture of TNFRSF13B nucleotide diversity and haplotype structure and making suggestion of its evolutionary history possible. A slow rate of evolution, within our species and when compared to the chimpanzee, low levels of genetic diversity geographical structure and the absence of recent population specific selective pressures were observed for the examined genomic region, suggesting that geographical distribution of its variability is more plausibly related to its involvement also in innate immunity rather than in adaptive immunity only. This, together with the extremely subtle disease/healthy samples differences observed, suggests that CVID might be more likely related to still unknown environmental and genetic factors, rather than to the nature of TNFRSF13B variants only.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT Given the decline of shallow-water red coral populations resulting from over-exploitation and mass mortality events, deeper populations below 50 metres depth (mesophotic populations) are currently the most harvested; unfortunately, very little is known about their biology and ecology. The persistence of these populations is tightly linked to their adult density, reproductive success, larval dispersal and recruitment. Moreover, for their conservation, it is paramount understand processes such as connectivity within and among populations. Here, for the first time, genetic variability and structuring of Corallium rubrum populations collected in the Tyrrhenian Sea ranging from 58 to 118 metres were analyzed using ten microsatellite loci and two mitochondrial markers (mtMSH and MtC). The aims of the work were 1) to examine patterns of genetic diversity within each geographic area (Elba, Ischia and Praiano) and 2) to define population structuring at different spatial scales (from tens of metres to hundreds of kilometres). Based on microsatellite data set, significant deviations from Hardy-Weinberg equilibrium due to elevated heterozygote deficiencies were detected in all samples, probably related to the presence of null alleles and/or inbreeding, as was previously observed in shallow-water populations. Moreover, significant levels of genetic differentiation were observed at all spatial scale, suggesting a recent isolation of populations. Biological factors which act at small spatial scale and/or abiotic factors at larger scale (e.g. summer gyres or absence of suitable substrata for settlement) could determine this genetic isolation. Using mitochondrial markers, significant differences were found only at wider scale (between Tuscany and Campania regions). These results could be related to the different mutation rate of the molecular makers or to the occurrence of some historical links within regions. A significant isolation by distance pattern was then observed using both data sets, confirming the restricted larval dispersal capability of the species. Therefore, the hypothesis that deeper populations may act as a source of larvae helping recovery of threatened shallow-water populations is not proved. Conservation strategies have to take into account these results, and management plans of deep and currently harvested populations have to be defined at a regional or sub regional level, similarly to shallow-water populations. Nevertheless, further investigations should be needed to understand better the genetic structuring of this species in the mesophotic zone, e.g. extending studies to other Mediterranean deep-water populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Population genetic and phylogeography of two common mediterranean species were studied in 10 localities located on the coasts of Toscana, Puglia and Calabria. The aim of the study was to verify the extent of genetic breaks, in areas recognized as boundaries between Mediterranean biogeographic sectors. From about 100 sequences obtained from the mitochondrial Cytochrome Oxidase subunit I (COI) gene of Halocynthia papillosa and Hexaplex trunculus genetic diversity, genetic structure at small and large distances and demographic history of both specieswere analyzed. No evidences of genetic breaks were found for the two species in Toscana and Puglia. The genetic structure of H. trunculus evidences the extent of a barrier to gene flow localized in Calabria, which could be represented by the Siculo-Tunisian Strait and the Strait of Messina. The observed patterns showed similar level of gene flow at small distances in both species, although the two species have different larval ecology. These results suggest that other factors, such as currents, local dynamics and seasonal temperatures, influence the connectivity along the Italian peninsula. The geographic distribution of the haplotypes shows that H. papillosacould represent a single genetic pool in expansion, whereas H. trunculus has two distinct genetic pools in expansion. The demographic pattern of the two species suggests that Pleistocene sea level oscillations, in particular of the LGM, may have played a key role in shaping genetic structure of the two species. This knowledge provides basic information, useful for the definition of management plans, or for the design of a network of marine protected areas along the Italian peninsula.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In den letzten Jahrzehnten wurde eine deutliche, anhaltende Veränderung des globalen Klimas beobachtet, die in Zukunft zu einer Erhöhung der durchschnittlichen Oberflächentemperatur, erhöhten Niederschlagsmengen und anderen gravierenden Umweltveränderungen führen wird (IPCC 2001). Der Klimawandel wird in Flüssen sowohl mehr Extremereignisse verursachen als auch das Abflussregime bisher schmelzwasserdominierter Flüsse zu grundwassergespeisten hin ändern; dies gilt insbesondere für den Rhein (MIDDELKOOP et al. 2001). Um die möglichen Auswirkungen dieser Veränderungen auf die genetische Populationsstruktur von Makrozoobenthosorganismen vorhersagen zu können, wurden in den grundwassergespeisten Flüssen Main und Mosel sowie im Rhein Entnahmestellen oberhalb und unterhalb von Staustufen beprobt, die durch kontrastierende Strömungsverhältnisse als Modell für die zu erwartenden Änderungen dienten. Als Untersuchungsobjekt wurden Dreissena polymorpha PALLAS 1771 sowie Dikerogammarus villosus SOWINSKI 1894 herangezogen. Sie zeichnen sich durch hohe Abundanzen aus, sind aber unterschiedlich u.a. hinsichtlich ihrer Besiedlungsstrategie und –historie. Bei beiden Spezies sind die phylogeographischen Hintergründe bekannt; daher wurde auch versucht, die Einwanderungsrouten in der Populationsstruktur nachzuweisen (phylogeographisches Szenario). Dies konkurrierte mit der möglichen Anpassung der Spezies an das Abflussregime des jeweiligen Flusses (Adaptations-Szenario). Die Populationen wurden molekulargenetisch mit Hilfe der AFLP-Methode („Amplified-Fragment Length Polymorphism“) untersucht. Die Ergebnisse zeigen, dass D. polymorpha deutlich durch die Abflussregimes der Flüsse (Schmelz- oder Grundwasserdominanz) beeinflusst wird. Die Allelfrequenzen in Populationen des Rheins sind von denen der beiden grundwassergespeisten Flüsse Main und Mosel deutlich unterscheidbar (Adaptations-Szenario). Jedoch ist kein Unterschied der genetischen Diversitäten zu beobachten; das ist auf die lange Adaptation an ihre jeweiligen Habitate durch die lange Besiedlungsdauer zurückzuführen. Dies ist auch der Grund, warum die Einwanderungsrouten anhand der Populationsstruktur nicht mehr nachzuweisen waren. Die kontrastierenden Strömungsverhältnisse um die Staustufen hatten ebenfalls keine konsistenten Auswirkungen auf die genetische Diversität der Populationen. Diese Ergebnisse zeigen eine hohe phänotypische Plastizität der Spezies und dadurch eine große Anpassungsfähigkeit an wechselnde Umweltbedingungen, die unter anderem für den großen Erfolg dieser Spezies verantwortlich ist. D. villosus wanderte erst vor Kurzem in das Untersuchungsgebiet ein; die Einwanderungsroute war anhand der genetischen Diversität nachvollziehbar (phylogeographisches Szenario); durch die kurze Besiedlungsdauer war eine Adaptation an die divergenten Abflussregime der Flüsse nicht zu erwarten und wurde auch nicht gefunden. Dagegen war ein deutlicher negativer Einfluss von starker Strömung auf die genetische Diversität nachweisbar. Die Ergebnisse weisen darauf hin, dass die zukünftigen Auswirkungen des Klimawandels auf die Strömungsgeschwindigkeit negative Konsequenzen auf die genetische Diversität von D. villosus haben werden, während D. polymorpha hier keine Auswirkungen erkennen lässt. Die Auswirkungen des veränderten Abflussregimes im Rhein sind für D. villosus mit den vorliegenden Daten aufgrund der kurzen Besiedlungsdauer nicht vorhersagbar; D. polymorpha wird durch die Veränderung des Rheins zu einem grundwassergespeisten Fluss zwar einen Wandel in der genetischen Struktur erfahren, aber auch hier keine Einbußen in der genetischen Diversität erleiden.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HintergrundrnDie hygrohalophytische Gattung Salicornia ist in Mittel- und Westeuropa durch vier nah verwandte, sympatrisch vorkommende Arten vertreten. Es handelt sich um die zwei tetraploiden Arten S. procumbens und S. stricta und die diploiden Arten S. europaea und S. ramosissima. Morphologisch lassen sich die Arten zwar nur schwer voneinander unterscheiden, die morphologische Variation ist aber wiederum so hoch, dass mehrere distinkte Arten/Morphotypen unterschieden werden können. Bezüglich ihrer Verteilung im hochdynamischen Lebensraum Salzwiese findet man die verschiedenen Arten/Morphotypen in überlappenden Bereichen des Habitats. Ihr relativ vorhersagbares Auftreten entlang eines ökologischen Gradienten innerhalb ihres Lebensraumes scheint jedoch für eine ökologische Differenzierung der verschiedenen Arten/Morphotypen zu sprechen. Aufgrund des sympatrischen Vorkommens der scheinbar ökologisch und morphologisch differenzierten Morphotypen stellt sich die Frage, durch welche Prozesse diese entstanden sein könnten (genetische und ökologische Differenzierung) aber auch welche Prozesse die dauerhafte Koexistenz der Arten (reproduktive Isolationsmechanismen) aufrechterhalten.rnZielsetzungrnZiel dieser Arbeit war es, die Entstehung und Diversifizierung der mittel- und westeuropäischen Salicornia-Arten anhand von molekulargenetischen, ökologischen und reproduktionsbiologischen Methoden zu untersuchen.rnMethodenrnAnhand einer AFLP-Fragmentanalyse mit 89 Herkünften aus Großbritannien, Frankreich und Deutschland wurden molekulare Phylogenien erstellt sowie eine Hauptkomponenten- und Clusteranalyse durchgeführt. Um die ökologische Differenzierung und phänotypische Plastizität der vier Arten/Morphotypen zu untersuchen wurde ein reziprokes Transplantationsexperiment durchgeführt. Um die reproduktiven Isolationsmechanismen der Arten/Morphotypen zu untersuchen, wurden verschiedene Beobachtungen und Experimente durchgeführt.rnErgebnissernDie molekularen Analysen konnten zwar die beiden Artengruppen (Ploidiestufen) trennen, lieferten aber innerhalb dieser weder ein taxonomisches noch ein geographisches Signal. Akzessionen mit identischer Morphologie aus der gleichen Population verteilten sich in den Analysen in verschiedene genetische Cluster. Identische Morphotypen aus verschiedenen geographischen Regionen gruppieren teilweise zusammen. Das Transplantationsexperiment zeigte für die beiden tetraploiden Arten S. procumbens und S. stricta eine deutliche ökologische Differenzierung, bei S. procumbens in Form von verminderter Fitness und einer beschleunigten Phänologie, bei S. stricta nur in Form einer veränderten Phänologie. Bezüglich der Plastizität zeigten beide tetraploiden Arten eine konstante Morphologie. Die beiden diploiden Taxa S. europaea und S. ramosissima zeigten weder eine klare ökologische Differenzierung noch eine konstante Morphologie. Bezüglich der Reproduktionsbiologie konnte bestätigt werden, dass Selbstung bei allen Taxa der hauptsächliche Reproduktionsmodus ist. Bei den tetraploiden Taxa zeigte sich zwar ein geringes Maß an Fremdbefruchtung, bei den diploiden Taxa führen dagegen morphologische Besonderheiten zu hochgradiger Selbstung.rnRésumérnDie in Mittel- und Westeuropa vorkommenden Salicornia-Arten stellen keine evolutionären Einheiten dar. Die beiden tetraploiden Taxa sollten auf Grund ihrer parallelen Entstehung und ökologischen Differenzierung als Ökotypen angesprochen werden. Beide Ökotypen weisen ein hohes Ausbreitungspotential aus und persistieren als Inzuchtlinien mit geringem Anteil an Fremdbestäubung. Die diploiden Taxa sind weder ökologisch differenziert noch morphologisch stabil und sollten deshalb als nur ein morphologisch sehr variables, aus zahlreichen weitverbreiteten Inzuchtlinien bestehendes Taxon angesehen werden.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An increased incidence of Clostridium difficile infection (CDI) is associated with the emergence of epidemic strains characterised by high genetic diversity. Among the factors that may have a role in CDI there is a family of 29 paralogs, the cell wall proteins (CWPs), which compose the outer layer of the bacterial cell and are likely to be involved in colonisation. Previous studies have shown that 12 of the29 cwp genes are clustered in the same region, named after slpA (cwp1) the slpA locus, whereas the remaining 17 paralogs are distributed throughout the genome. The variability of 14 of these 17 cwp paralogs was determined in 40 C. difficile clinical isolates belonging to six of the currently prevailing PCR ribotypes. Based on sequence conservation, these cwp genes were divided into two groups, one comprising cwp loci having highly conserved sequences in all isolates, and the other 5 loci showing low genetic conservation between isolates of the same PCR ribotype as well as between different PCR ribotypes. Three conserved CWPs, Cwp16, Cwp18 and Cwp25, and two variable ones, Cwp26 and Cwp27, were characterised further by Western blot analysis of total cell extracts or S-layer preparations of the C. difficile clinical isolates. Expression of genetically invariable CWPs is well conserved in all isolates, while genetically variable CWPs are not always expressed at comparable levels even in strains containing identical sequences but belonging to different PCR ribotypes. In addition, we chose to analyse the immune response obtained in a protection experiment, carried out in hamsters, using a protein microarray approach to study the in vivo expression and the immunoreactivity of several surface proteins, including 18 Cwps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study deal with the population structure and connectivity of the Mediterranean endemic starry ray Raja asterias (Delaroche, 1809) in the Western and Eastern Mediterranean basin. A panel of eight microsatellite loci which cross-amplify in Rajidae (El Nagar, 2010) was used to assess population connectivity and structure. Those aims were investigated by analyzing the genetic variation of 9 population sample for a total of 185 individuals collected during past scientific surveys (MEDITS, GRUND), commercial trawling and also directly at fish markets. The purpose of this thesis is to estimate the genetic divergence occurring between the Mediterranean populations and, in particular, to assess the presence of any barrier (geographic, hydrogeological and biological) to gene flow for this species. Different statistical approaches were performed to reach this aim evaluating both the genetic diversity (nucleotide diversity, allelic richness, observed and expected heterozygosity and Hardy-Weinberg equilibrium test) and the population differentiation patterns (pairwise Fst estimated and population structure analysis). The results obtained from the analysis of the microsatellite dataset suggest a geographic and genetic separation between the starry ray populations of the Mediterranean basin into three or four distinct groups: Western and Eastern Mediterranean basins and Sicilian coast always clustering as an independent group and Algeria which could be or not considered another separate group. The data were discussed from both an evolutionary and a conservation point of view and in relation to previous results obtained by the analysis of mitochondrial marker. A comparison with other Mediterranean demersal skate species was performed in order to better contextualise our results. Finally, our results could offer useful information to protect vulnerable species as R. asterias and developing effective conservation plans in the Mediterranean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In many plant species, the genetic template of early life-stages is formed by animal-mediated pollination and seed dispersal and has profound impact on further recruitment and population dynamics. Understanding the impact of pollination and seed dispersal on genetic patterns is a central issue in plant population biology. In my thesis, I investigated (i) contemporary dispersal and gene flow distances as well as (ii) genetic diversity and spatial genetic structure (SGS) across subsequent recruitment stages in a population of the animal-pollinated and dispersed tree Prunus africana in Kakamega Forest, West Kenya. Using microsatellite markers and parentage analyses, I inferred distances of pollen dispersal (father-to-mother), seed dispersal/maternal gene flow (mother-to-offspring) as well as paternal gene flow (father-to-offspring) for four early life stages of the species (seeds and fruits, current year seedlings, seedlings ≤ 3yr, seedlings > 3yr). Distances of pollen and seed dispersal as well as paternal gene flow were significantly shorter than expected from the spatial arrangement of trees and sampling plots. They were not affected by the density of conspecific trees in the surrounding. At the propagule stage, mean pollen dispersal distances were considerably (23-fold) longer than seed dispersal distances, and paternal gene flow distances exceeded maternal gene flow by a factor of 25. Seed dispersal distances were remarkably restricted, potentially leading to a strong initial SGS. The initial genetic template created by pollination and seed dispersal was extensively altered during later recruitment stages. Potential Janzen-Connell effects led to markedly increasing distances between offspring and both parental trees in older life stages. This showed that distance and density-dependent mortality factors are not exclusively related to the mother tree, but also to the father. Across subsequent recruitment stages, the pollen to seed dispersal ratio and the paternal to maternal gene flow ratio dropped to 2.1 and 3.4, respectively, in seedlings > 3yr. The relative changes in effective pollen dispersal, seed dispersal, and paternal gene flow distances across recruitment stages elucidate the mechanisms affecting the contribution of the two processes pollen and seed dispersal to overall gene flow. Using the same six microsatellite loci, I analyzed genetic diversity and SGS across five life stages, from seed rain to adults. Levels of genetic diversity within the studied P. africana population were comparable to other Prunus species and did not vary across life stages. In congruence with the short seed dispersal distances, I found significant SGS in all life stages. SGS decreased from seed and early seedling stages to older juvenile stages, and it was higher in adults than in late juveniles of the next generation. A comparison of the data with direct assessments of contemporary gene flow patterns indicate that distance- or density-dependent mortality, potentially due to Janzen-Connell effects, led to the initial decrease in SGS. Intergeneration variation in SGS could have been driven by variation in demographic processes, the effect of overlapping generations, and local selection processes. Overall, my study showed that complex sequential processes during recruitment contribute to the spatial genetic structure of tree populations. It highlights the importance of a multistage perspective for a comprehensive understanding of the impact of animal-mediated pollen and seed dispersal on spatial population dynamics and genetic patterns of trees.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study the population structure and connectivity of the Mediterranean and Atlantic Raja clavata (L., 1758) were investigated by analyzing the genetic variation of six population samples (N = 144) at seven nuclear microsatellite loci. The genetic dataset was generated by selecting population samples available in the tissue databases of the GenoDREAM laboratory (University of Bologna) and of the Department of Life Sciences and Environment (University of Cagliari), all collected during past scientific surveys (MEDITS, GRUND) from different geographical locations in the Mediterranean basin and North-east Atlantic sea, as North Sea, Sardinian coasts, Tuscany coasts and Cyprus Island. This thesis deals with to estimate the genetic diversity and differentiation among 6 geographical samples, in particular, to assess the presence of any barrier (geographic, hydrogeological or biological) to gene flow evaluating both the genetic diversity (nucleotide diversity, observed and expected heterozygosity, Hardy- Weinberg equilibrium analysis) and population differentiation (Fst estimates, population structure analysis). In addition to molecular analysis, quantitative representation and statistical analysis of morphological individuals shape are performed using geometric morphometrics methods and statistical tests. Geometric coordinates call landmarks are fixed in 158 individuals belonging to two population samples of Raja clavata and in population samples of closely related species, Raja straeleni (cryptic sibling) and Raja asterias, to assess significant morphological differences at multiple taxonomic levels. The results obtained from the analysis of the microsatellite dataset suggested a geographic and genetic separation between populations from Central-Western and Eastern Mediterranean basins. Furthermore, the analysis also showed that there was no separation between geographic samples from North Atlantic Ocean and central-Western Mediterranean, grouping them to a panmictic population. The Landmark-based geometric morphometry method results showed significant differences of body shape able to discriminate taxa at tested levels (from species to populations).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Adriatic sturgeon, Acipenser naccarii (Bonaparte, 1836), is a highly threatened species due to human activities, particularly overfishing and habitat destruction. Its peculiar ecology and biology (restricted areal and anadromy) makes this species particularly vulnerable. In March 2010 the IUCN has identified the Adriatic sturgeon as a critically endangered species according to the Red List of Threatened Species. Due to its rapid decline, starting from the 80s, at present there is no evidence of natural reproduction in wild environment, which makes the Adriatic sturgeon dependenton captive breeding programs that need to be improved in order to be effective for the survival of the species. For this purpose this study aims to characterize artificial restocking population of Adriatic sturgeon, with both genetic and physiological analysis in order to establish an efficient restocking program for future reproductions. The research is structured on two levels: First genetically, by analyzing 9 microsatellite loci. This gives information relatively about parent allocation and kinship between individuals that were sampled for this study. Hence to predict which reproduction events are the most optimal in terms of incrementing genetic diversity, by the estimation of multilocus pairwise band sharing coefficients. Second step, physiological analysis: testosterone (T) concentration levels in each individual were measured for sexing, without sacrificing the lives of the animals with the use of an invasive examination of the gonads. The combination of interdisciplinary analysis is important to obtain an overall picture in order to indicate the main broodstock participating in reproduction events and future optimal potential participants, in order to ensure a valid management for restocking program and their monitoring.