939 resultados para Plant-pathogenic bacteria


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dried plant food materials are one of the major contributors to the global food industry. Widening the fundamental understanding on different mechanisms of food material alterations during drying assists the development of novel dried food products and processing techniques. In this regard, case hardening is an important phenomenon, commonly observed during the drying processes of plant food materials, which significantly influences the product quality and process performance. In this work, a recent meshfree-based numerical model of the authors is further improved and used to simulate the influence of case hardening on shrinkage characteristics of plant tissues during drying. In order to model fluid and wall mechanisms in each cell, Smoothed Particle Hydrodynamics (SPH) and the Discrete Element Method (DEM) are used. The model is fundamentally more capable of simulating large deformation of multiphase materials, when compared with conventional grid-based modelling techniques such as Finite Element Methods (FEM) or Finite Difference Methods (FDM). Case hardening is implemented by maintaining distinct moisture levels in the different cell layers of a given tissue. In order to compare and investigate different factors influencing tissue deformations under case hardening, four different plant tissue varieties (apple, potato, carrot and grape) are studied. The simulation results indicate that the inner cells of any given tissue undergo limited shrinkage and cell wall wrinkling compared to the case hardened outer cell layers of the tissues. When comparing unique deformation characteristics of the different tissues, irrespective of the normalised moisture content, the cell size, cell fluid turgor pressure and cell wall characteristics influence the tissue response to case hardening.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The expression of biomass-degrading enzymes (such as cellobiohydrolases) in transgenic plants has the potential to reduce the costs of biomass saccharification by providing a source of enzymes to supplement commercial cellulase mixtures. Cellobiohydrolases are the main enzymes in commercial cellulase mixtures. In the present study, a cellobiohydrolase was expressed in transgenic corn stover leaf and assessed as an additive for two commercial cellulase mixtures for the saccharification of pretreated sugar cane bagasse obtained by different processes. Results Recombinant cellobiohydrolase in the senescent leaves of transgenic corn was extracted using a simple buffer with no concentration step. The extract significantly enhanced the performance of Celluclast 1.5 L (a commercial cellulase mixture) by up to fourfold on sugar cane bagasse pretreated at the pilot scale using a dilute sulfuric acid steam explosion process compared to the commercial cellulase mixture on its own. Also, the extracts were able to enhance the performance of Cellic CTec2 (a commercial cellulase mixture) up to fourfold on a range of residues from sugar cane bagasse pretreated at the laboratory (using acidified ethylene carbonate/ethylene glycol, 1-butyl-3-methylimidazolium chloride, and ball-milling) and pilot (dilute sodium hydroxide and glycerol/hydrochloric acid steam explosion) scales. We have demonstrated using tap water as a solvent (under conditions that mimic an industrial process) extraction of about 90% recombinant cellobiohydrolase from senescent, transgenic corn stover leaf that had minimal tissue disruption. Conclusions The accumulation of recombinant cellobiohydrolase in senescent, transgenic corn stover leaf is a viable strategy to reduce the saccharification cost associated with the production of fermentable sugars from pretreated biomass. We envisage an industrial-scale process in which transgenic plants provide both fibre and biomass-degrading enzymes for pretreatment and enzymatic hydrolysis, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report provides a qualitative evaluation of Unmanned Aircraft Systems (UAS) and on-board sensor technology for use in plant biosecurity in the Australian context. The more general term UAS describes both the Unmanned Aerial Vehicle (UAV) and all supporting components required to operate it. This may include a ground station, operator or pilot, and a launch and recovery device for example. The focus is to identify how and under what circumstances UAS may be useful for plant biosecurity. This can be used to help guide future decisions regarding investment in UAS for plant biosecurity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction Chronic wounds are an area of major concern. The on-going and in-direct costs are substantial, reaching far beyond the costs of the hospitalization and associated care. As a result, pharmacological therapies have been developed to address treatment insufficiencies, however, the availability of drugs capable of promoting the wound repair process still remain limited. The wound healing properties of various herbal plants is well recognised amongst indigenous Australians. Hence, based on traditional accounts, we evaluated the wound healing potential of two Australian native plants. Methods Bioactive compounds were methanol extracted from dried plant leaves that were commercially sourced. Primary keratinocyte (Kc) and fibroblast (Fib) cells (denoted as Kc269, Kc274, Kc275, Kc276 and Fib274) obtained from surgical discarded tissue were cultured in 48-well plates and incubated (37⁰C, 5% CO2) overnight. The growth media was discarded and replaced with fresh growth media plus various concentrations (15.12 µg/mL, 31.25 µg/mL, 62.5 µg/mL, 125 µg/mL, 250 µg/mL and 500 µg/mL) of the plant extracts. Cellular responses were measured using the alamarBlue® assay and the CyQUANT® assay. Plant extracts in the aqueous phase were prepared by boiling whole leaves in water and taking aqueous phase samples at various (1, 2 , 5 minutes boiling) time points. Plant leaves were either added before the water was boiled (cold boiled) or after the water was boiled (hot boiled). The final concentrations of the aqueous plant extracts were 3.3 ng/mL (± 0.3 ng/mL) per sample. The antimicrobial properties of the plant extracts were tested using the well diffusion assay method against Staphylococcus aureus, Klebsiella pnuemoniae and methicillin resistant S. aureus and Bacillus cereus. Results Assay results from the almarBlue® and CYQUANT® assays indicated that extracts from both native plants at various time points (0, 24 and 48 hours) and concentrations (31.25 mg/mL, 62.5 mg/mL, and 125 mg/mL) were significantly higher (n=3, p=0.03 for Kc269, p=0.04 for Kc274, p=0.02 for Fib274, p=0.04 for Kc275 and p=0.001 for Kc276) compared with the untreated controls. Neither plant extract demonstrated cytotoxic effects. Significant antimicrobial activity against methicillin resistant Staphylococcus aureus (p=0.0009 for hot boiled plant A, n=2, p=0.034 for cold boiled plant A, n=2) K. pnuemoniae (p=0.0009 for hot boiled plant A, n=2, p=0.002 for cold boiled plant A, n=2) and B. cereus (p=0.0009 for hot boiled plant A, n=2, p=0.003 for cold boiled plant A, n=2) was observed at concentrations of 3.2 ng/mL for plant A and 3.4 ng/mL for plant B. Conclusion Both native plants contain bioactive compounds that increase cellular metabolic rates and total nucleic acid content. Neither plant was shown to be cytotoxic. Furthermore, both exhibited significant antimicrobial activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The discovery of peptides encoded by what were thought to be non-coding – or 'junk' – regions of precursors to microRNA sequences reveals a new layer of gene regulation. These sequences may not be junk, after all.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers the relationship between patent law and plant breeders' rights in light of modern developments in biotechnology. It examines how a number of superior courts have sought to manage the tensions and conflicts between these competing schemes of intellectual property protection. Part 1 considers the High Court of Australia case of Grain Pool of Western Australia v the Commonwealth dealing with Franklin barley. Part 2 examines the significance of the Supreme Court of the United States decision in JEM Ag Supply Inc v Pioneer Hi-Bred International Inc with respect to utility patents and hybrid seed. Part 3 considers the Supreme Court of Canada case of Harvard College v the Commissioner of Patents dealing with the transgenic animal, oncomouse, and discusses its implications for the forthcoming appeal from the Federal Court case of Percy Schmeiser v Monsanto.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exotic species dominate many communities; however the functional significance of species’ biogeographic origin remains highly contentious. This debate is fuelled in part by the lack of globally replicated, systematic data assessing the relationship between species provenance, function and response to perturbations. We examined the abundance of native and exotic plant species at 64 grasslands in 13 countries, and at a subset of the sites we experimentally tested native and exotic species responses to two fundamental drivers of invasion, mineral nutrient supplies and vertebrate herbivory. Exotic species are six times more likely to dominate communities than native species. Furthermore, while experimental nutrient addition increases the cover and richness of exotic species, nutrients decrease native diversity and cover. Native and exotic species also differ in their response to vertebrate consumer exclusion. These results suggest that species origin has functional significance, and that eutrophication will lead to increased exotic dominance in grasslands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil microorganisms are critical to ecosystem functioning and the maintenance of soil fertility. However, despite global increases in the inputs of nitrogen (N) and phosphorus (P) to ecosystems due to human activities, we lack a predictive understanding of how microbial communities respond to elevated nutrient inputs across environmental gradients. Here we used high-throughput sequencing of marker genes to elucidate the responses of soil fungal, archaeal, and bacterial communities using an N and P addition experiment replicated at 25 globally distributed grassland sites. We also sequenced metagenomes from a subset of the sites to determine how the functional attributes of bacterial communities change in response to elevated nutrients. Despite strong compositional differences across sites, microbial communities shifted in a consistent manner with N or P additions, and the magnitude of these shifts was related to the magnitude of plant community responses to nutrient inputs. Mycorrhizal fungi and methanogenic archaea decreased in relative abundance with nutrient additions, as did the relative abundances of oligotrophic bacterial taxa. The metagenomic data provided additional evidence for this shift in bacterial life history strategies because nutrient additions decreased the average genome sizes of the bacterial community members and elicited changes in the relative abundances of representative functional genes. Our results suggest that elevated N and P inputs lead to predictable shifts in the taxonomic and functional traits of soil microbial communities, including increases in the relative abundances of faster-growing, copiotrophic bacterial taxa, with these shifts likely to impact belowground ecosystems worldwide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this manual is to provide a practical guide to the Plant Breeder's Rights Act 1994 (Cth). It is a resource of information about the legislation, its administration, and its operation. This commentary is intended to assist plant breeders, scientific researchers, and business managers who want to make a more effective use of the Plant Breeder's Rights Act 1994 (Cth) in the management and commercialisation of their intellectual property rights. It is also designed to enhance the understanding of the legislation among lawyers, patent attorneys, qualified persons, and policy-makers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The brain is well protected against microbial invasion by cellular barriers, such as the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB). In addition, cells within the central nervous system (CNS) are capable of producing an immune response against invading pathogens. Nonetheless, a range of pathogenic microbes make their way to the CNS, and the resulting infections can cause significant morbidity and mortality. Bacteria, amoebae, fungi, and viruses are capable of CNS invasion, with the latter using axonal transport as a common route of infection. In this review, we compare the mechanisms by which bacterial pathogens reach the CNS and infect the brain. In particular, we focus on recent data regarding mechanisms of bacterial translocation from the nasal mucosa to the brain, which represents a little explored pathway of bacterial invasion but has been proposed as being particularly important in explaining how infection with Burkholderia pseudomallei can result in melioidosis encephalomyelitis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Nicotiana benthamiana is an allo-tetraploid plant, which can be challenging for de novo transcriptome assemblies due to homeologous and duplicated gene copies. Transcripts generated from such genes can be distinct yet highly similar in sequence, with markedly differing expression levels. This can lead to unassembled, partially assembled or mis-assembled contigs. Due to the different properties of de novo assemblers, no one assembler with any one given parameter space can re-assemble all possible transcripts from a transcriptome. Results In an effort to maximise the diversity and completeness of de novo assembled transcripts, we utilised four de novo transcriptome assemblers, TransAbyss, Trinity, SOAPdenovo-Trans, and Oases, using a range of k-mer sizes and different input RNA-seq read counts. We complemented the parameter space biologically by using RNA from 10 plant tissues. We then combined the output of all assemblies into a large super-set of sequences. Using a method from the EvidentialGene pipeline, the combined assembly was reduced from 9.9 million de novo assembled transcripts to about 235,000 of which about 50,000 were classified as primary. Metrics such as average bit-scores, feature response curves and the ability to distinguish paralogous or homeologous transcripts, indicated that the EvidentialGene processed assembly was of high quality. Of 35 RNA silencing gene transcripts, 34 were identified as assembled to full length, whereas in a previous assembly using only one assembler, 9 of these were partially assembled. Conclusions To achieve a high quality transcriptome, it is advantageous to implement and combine the output from as many different de novo assemblers as possible. We have in essence taking the ‘best’ output from each assembler while minimising sequence redundancy. We have also shown that simultaneous assessment of a variety of metrics, not just focused on contig length, is necessary to gauge the quality of assemblies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While virulence factors and the biofilm-forming capabilities of microbes are the key regulators of the wound healing process, the host immune response may also contribute in the events following wound closure or exacerbation of non-closure. We examined samples from diabetic and non-diabetic foot ulcers/wounds for microbial association and tested the microbes for their antibiotic susceptibility and ability to produce biofilms. A total of 1074 bacterial strains were obtained with staphylococci, Pseudomonas, Citrobacter and enterococci as major colonizers in diabetic samples. Though non-diabetic samples had a similar assemblage, the frequency of occurrence of different groups of bacteria was different. Gram-negative bacteria were found to be more prevalent in the diabetic wound environment while Gram-positive bacteria were predominant in non-diabetic ulcers. A higher frequency of monomicrobial infection was observed in samples from non-diabetic individuals when compared to samples from diabetic patients. The prevalence of different groups of bacteria varied when the samples were stratified according to age and sex of the individuals. Several multidrug-resistant strains were observed among the samples tested and most of these strains produced moderate to high levels of biofilms. The weakened immune response in diabetic individuals and synergism among pathogenic micro-organisms may be the critical factors that determine the delicate balance of the wound healing process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report describes a proof of concept for multi-rotor localised surveillance using a multi-spectral sensor for plant biosecurity applications. A literature review was conducted on previous applications using airborne multispectral imaging for plant biosecurity purposes. A ready built platform was purchased and modified in order to fit and provide suitable clearance for a Tetracam Mini-MCA multispectral camera. The appropriate risk management documents were developed allowing the platform and the multi-spectral camera to be tested extensively. However, due to technical difficulties with the platform the Mini- MCA was not mounted to the platform. Once a suitable platform is developed, future extensions can be conducted into the suitability of the Mini-MCA for airborne surveillance of Australian crops.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to identify new anticancer compounds from nature, a prefractionated library derived from Australian endemic plants was generated and screened against the prostate cancer cell line LNCaP using a metabolic assay. Fractions from the seeds, leaves, and wood of Anopterus macleayanus showed cytotoxic activity and were subsequently investigated using a combination of bioassay-guided fractionation and mass-directed isolation. This led to the identification of four new diterpenoid alkaloids, 6α-acetoxyanopterine (1), 4′-hydroxy-6α-acetoxyanopterine (2), 4′-hydroxyanopterine (3), and 11α-benzoylanopterine (4), along with four known compounds, anopterine (5), 7β-hydroxyanopterine (6), 7β,4′-dihydroxyanopterine (7), and 7β-hydroxy-11α-benzoylanopterine (8); all compounds were purified as their trifluoroacetate salt. The chemical structures of 1–8 were elucidated after analysis of 1D/2D NMR and MS data. Compounds 1–8 were evaluated for cytotoxic activity against a panel of human prostate cancer cells (LNCaP, C4-2B, and DuCaP) and nonmalignant cell lines (BPH-1 and WPMY-1), using a live-cell imaging system and a metabolic assay. All compounds showed potent cytotoxicity with IC50 values of <400 nM; compound 1 was the most active natural product from this series, with an IC50 value of 3.1 nM toward the LNCaP cell line. The live-cell imaging assay on 1–8 showed a concentration- and time-dependent effect on the cell morphology and proliferation of LNCaP cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The uses of genetic sequences to inform, enable or create products or services for human biomedicine are substantially different from their uses in crop-based agriculture. Here, we explore what similarities and differences may emerge in patent use and strategies, and map patent-disclosed sequences onto three important plant genomes: maize (corn), rice and soybean. We focus on those referenced in the granted patent claims to compare their uses to the approach used in human gene patenting.