972 resultados para Photosynthetic acclimation
Resumo:
在人类活动导致全球变暖的前提下,由于全球气温的升高,地表水分加速向空中蒸发。从20世纪70年代至今,地球上严重干旱地区的面积几乎扩大了一倍。这一增长的一半可归因于气温升高而不是降雨量下降,因为实际上同期全球平均降水量还略有增长。干旱对陆地植物和农林生态系统产生深远影响,并已成为全球变化研究的一个重要方面。位于青藏高原东部的川西亚高山针叶林是研究气候变暖对陆地生态系统影响的重要森林类型。森林采伐迹地、人工林下和林窗环境作为目前该区人工造林和森林更新的重要生境,其截然不同的光环境对亚高山针叶林更新和森林动态有非常重要的影响。凋落物产生的化感物质可通过影响种子萌发和早期幼苗的定居而影响种群的建立和更新,而人工林和自然林物种以及更新速度的差异性也都受凋落物的影响。 云杉是川西亚高山针叶林群落的重要树种之一,在维持亚高山森林的景观格局和区域生态安全方面具有十分重要的作用,其自然更新能力及其影响机制一直是研究的热点问题。本试验以云杉种子和2年生幼苗为研究对象,从萌发、根尖形态、幼苗生长、光合作用、渗透调节和抗氧化能力等方面研究了不同光环境下水分亏缺和凋落物水浸液对云杉种子和幼苗生长的影响。旨在从更新的角度探讨亚高山针叶林自然更新的过程,其研究成果可在一定程度上为川西亚高山针叶林更新提供科学依据,同时也可为林业生产管理提供科学指导。主要研究结论如下: 水分亏缺在生长形态、光合作用、抗氧化能力、活性氧化对云杉幼苗都有显著影响。总体表现为,水分亏缺导致了云杉幼苗的高度、地径、单株总生物量降低,增加了地下部分的生长;水分亏缺显著降低了云杉叶片中相对含水量、光合色素、叶氮含量,净光合速率和最大量子产量(Fv/Fm),提高了幼苗叶片中膜脂过氧化产物(MDA)的含量;水分亏缺提高了幼苗叶片中过氧化氢(H2O2)含量,超氧荫离子(O2-)生成速率以及脯氨酸和抗氧化系统的活性(ASA, SOD, CAT, POD, APX和GR)。从这些结果可知,植物在遭受水分亏缺导致的伤害时,其自身会形成防御策略,并通过改变形态和生理方面的特性以减轻害。但是,这种自我保护机制依然不能抵抗严重水分亏缺对植物的伤害。 模拟林下低光照条件显著增加单株植物的地上部分生长,尤其是其叶片的比叶面积(叶面积/叶干重),同时其光合色素含量和叶片相对含水量也显著增加,这些改变直接导致植株光合速率和生物量的增加。同时,与高光照水平相比,低光照幼苗的膜脂过氧化产物(MDA)和活性氧物质均较低,显示出低光照比高光照水平对植物的更低的氧化伤害。尽管低光照也导致大部分抗氧化酶活性降低,但这正显示出植物遭受低的氧化伤害,更印证了前面的结论。 凋落物水浸液影响了云杉种子的萌发和根系的生长,更在形态、光合作用、抗氧化能力、活性氧物质以及叶氮水平上显著影响了云杉幼苗,其中,以人工纯林凋落物的影响更有强烈。具体表现在,种子萌发速率和萌发种子幼根的长度表现为对照>自然林处理>人工纯林;凋落物水浸液抑制种子分生区和伸长区的生长,人工林处理更降低了根毛区的生长,使根吸水分和养分困难。对2年生幼苗的影响主要表现在叶绿素含量、光合速率以及叶氮含量的降低;膜脂过氧化产物、活性氧物质和抗氧化酶系统的显著增加。同样的,人工纯林处理对云杉幼苗的影响显著于自然林处理。 在自然生态系统中,由于全球变暖气温升高导致的水分亏缺和森林凋落物都存在森林的砍伐迹地,林窗和林下环境中。我们的研究表明,与迹地或林窗强光照比较,林下的低光照环境由于为植物的生长营造了较为湿润的微环境,因此水分亏缺在林下对云杉幼苗造成的影响微弱。这可以从植物的形态、光合速率以及生物量积累,过氧化伤害和抗氧化酶系统表现出来。另一方面,凋落物水浸液在模拟林下低光照环境对植物的伤害也微弱于强光照环境,这与强光照环境高的水分散失导致环境水分亏缺有关;而人工纯林处理对云杉幼苗的伤害比对照和自然林处理显示出强烈的抑制作用。 Under the pre-condition of global warming resulted from intensive human activities, water in the earth’s surface rapidly evaporates due to the increase of global air temperature. From 1970s up to now, the area of serious drought in the world is almost twice as ever. This increase might be due to the increasing air temperature and not decreasing rainfall because global average rainfall in the corresponding period slightly is incremental. Drought will have profound impacts on terrestrial and agriculture-forest system and has also become the important issue of global change research. The subalpine coniferous forests in the eastern Qinghai-Tibet Plateau provide a natural laboratory for the studying the effects of global warming on terrestrial ecosystems. The light environment significantly differs among cutting blanks, forest gap and understory, which is particularly important for plant regeneration and forest dynamics in the subalpine coniferous forests. Picea asperata is one of the keystone species of subalpine coniferouis forests in western China, and it is very important in preserving landscape structure and regional ecological security of subalpine forests. The natural regeneration capacities and influence mechanism of Picea asperata are always the hot topics. In the present study, the short-term effects of two light levels (100% of full sunlight and 15% of full sunlight), two watering regimes (100% of field capacity and 30% of field capacity), two litter aqueous extracts (primitive forest and plantation aqueous extracts) on the seed germination, early growth and physiological traits of Picea asperata were determined in the laboratory and natural greenhouse. The present study was undertaken so as to give a better understanding of the regeneration progress affected by water deficit, low light and litter aqueous extracts. Our results could provide insights into the effects of climate warming on community composition and regeneration behavior for the subalpine coniferous forest ecosystem processes, and provide scientific direction for the forest production and management. Water deficit had significant effects on growth, morphological, physiological and biochemical traits of Picea asperata seedlings. Water deficit resulted in the decrease in height, basal diameter, total biomass and increase in under-ground development; water deficit significantly reduced the needle relative water content, photosynthetic pigments, needle nitrogen concentration, net photosynthetic rate and the maximum potential quantum yield of photosynthesis (Fv/Fm), and increased the degree of lipid peroxidation (MDA) in Picea asperata seedlings; water deficit also increased the rate of superoxide radical (O2-) production, hydrogen peroxide (H2O2) content, free proline content and the activities of antioxidant systems (ASA, SOD, POD, CAT, APX and GR) in Picea asperata seedlings. These results indicated that some protective mechanism was formed when plants suffered from drought stress, but the protection could not counteract the harm resulting from the serious drought stress on them. Low light in the understory significantly increased seedling above-ground development, especially the species leaf area (SLA), and photosynthetic pigments and relative needle content. These changes resulted in the increase in net photosynthetic rate and total biomass. Moreover, the lower MDA content and active oxygen species (AOS) (H2O2 and O2-) in low light seedlings suggested that low light had weaker oxidative damage as compared to high light. Lower antioxidant enzymes activities in low light seedlings indicated the weaker oxidative damage on Picea asperata seedlings than high light seedlings, which was correlative with the changes in MDA and AOS. Litter aqueous extracts affected seed germination and root system of Picea asperata seedlings. Significant changes in growth, photosynthesis, antioxidant activities, active oxygen species and leaf nitrogen concentration were also found in Picea asperata seedlings, and plantation treatment showed the stronger effects on these traits than those in control and primitive forest treatment. The present results indicated that seed germination and radicle length parameters in control were superior to those in primitive forest treatment, and those of primitive forest treatment were superior to plantation treatment; litter aqueous extracts inhibited the meristematic and elongation zone, and plantation treatment caused a decrease in root hairs so as to be difficult in absorbing water and nutrient in root system. On the other hand, litter aqueous extracts significantly decreased chlorophyll content, net photosynthetic rate and leaf nitrogen concentration of Picea asperata seedlings; MDA, AOS and antioxidant system activities were significantly increased in Picea asperata seedlings. Similarly, plantation treatment had more significant effect on Picea asperata seedlings as compared to primitive forest treatment. In the nature ecosystem, water deficit resulted from elevating air temperature and litter aqueous extract may probably coexist in the cutting blank, forest gap and understory. Our present study showed that water deficit had weaker effects on low light seedlings in the understory as compared to high light seedlings in the cutting blank and forest gap. The fact was confirmed from seedlings growth, gas exchange and biomass accumulation, peroxidation and antioxidant systems. This might be due to that low light-reduced leaf and air temperatures, vapour-pressure deficit, and the oxidative stresses can aggravate the impact of drought under higher light. On the other hand, litter aqueous extracts in the low light had weaker effects on the Picea asperata seedlings than those at high light level, which might be correlative to the water evapotranspiration under high light. Moreover, plantation litter aqueous extracts showed stronger inhibition for seed germination and seedling growth than control and primitive forest treatments.
Resumo:
由于人类活动所引起的地球大气层中温室气体的富集已导致全球地表平均温度在20世纪升高了0.6 ℃,并预测在本世纪将上升1.4-5.8 ℃。气候变暖对陆地植物和生态系统影响深远,并已成为全球变化研究的重要议题。高海拔、高纬度地带的生态系统对气候变化最敏感。而在高原和高山极端环境影响下所形成的高寒草甸生态系统极其脆弱,对由于温室效应引起的全球气候变化极其敏感,对这些变化的响应更具有超前性。 本研究以川西北高寒草甸植物群落及几种主要物种为研究对象,采用国际山地综合研究中心(ITEX)普遍所采用的增温方法-----开顶式生长室(OTC)模拟气候变暖来研究增温对高寒草甸植物群落结构、物质分配及其主要物种生长和生理的影响,以探讨高寒草甸植物响应与适应气候变暖的生物学和生态学机制。主要研究结论如下: 1、OTC的增温效果 由于地温、地表温度和气温的平均值在OTC内分别高出对照样地0.28℃、0.46℃和1.4℃,这说明本研究所采用的开顶式生长室(OTC)起到了增温的作用;同时,由于温室内与温室外接受的降水量相同,温室内由于热量条件的改善,土壤蒸发和植被的蒸腾作用增强,直接导致了OTC内土壤表层相对湿度的减少。 2、群落结构对增温的响应 由于增温时间较短,增温内外样地的物种组成并未发生改变;但增温后一定程度上改变了植物群落的小气候环境,从而导致物种间的竞争关系被破坏,种间竞争关系的破坏引起群落优势种组成发生相应的改变,在对照样地,鹅绒委陵菜、甘青老鹳草、遏蓝菜和蚤缀是占绝对优势的物种,而在OTC内,小米草、尼泊尔酸模、垂穗披碱草、发草和羊茅的重要性显著增加。 禾草和杂草由于对增温的生物学特性及其资源利用响应的不同,加之增温造成土壤含水量下降等环境因子的改变。与对照样地相比较,OTC内禾草的盖度及生物量都显著增加,而杂草的盖度和生物量则显著下降。 3、植物生长期对增温的响应 OTC内立枯和调落物的生物量在生长季末(10月份)都要小于对照样地的立枯和调落物生物量,而OTC内的地上鲜体生物量在10月份却略高于对照样地。这说明OTC内植物的衰老或死亡得以延缓,而植物的生长期得以延长。 4、群落生物量及分配对增温的响应 OTC内的地上鲜体生物量(10月份除外)和地下0-30cm的根系生物量与对照样地相比较,都出现了不同程度的减少;土壤根系的分配格局也发生了明显的改变,其中,OTC内0-10cm土层的生物量分配比例增加,而20-30cm土层生物量分配比例的减少。 5、群落碳、氮对增温的响应 增温后,OTC内植物群落地上活体和地下活根的碳浓度不同程度的高于对照样地,植物群落的碳库在OTC内也略高于对照样地;而OTC内植物群落地上活体和地下活根的氮浓度不同程度的低于对照样地,其植物群落的氮库与对照样地相比也略有下降。 6、几种主要植物的生长及物质分配对增温的响应 垂穗披碱草在增温后株高、比叶面积和地上生物量均显著地增加;尼泊尔酸模在增温后比叶面积和单株平均生物量积累显著地增加,而各组分中,增温处理使叶的生物量显著增加,而根的生物量却显著下降;鹅绒委陵菜在增温后株高、比叶面积和单株平均生物量积累显著地减少,而各组分中,增温处理使叶和茎的生物量显著减少,根的生物量却显著地增加。 尼泊尔酸模的LMR、RMR、R/S、根部碳含量、碳和氮在叶片与根部的分配比例在增温后显著地增加,而SMR、根部氮含量、碳和氮在茎部的分配比例在增温后却显著地降低;鹅绒委陵菜的RMR、R/S、碳和氮在根部的分配比例在增温后显著地增加,而SMR、LMR、碳在叶片的分配比例在增温后却显著地降低 7、几种主要植物的光合生理过程对增温的响应 增温使垂穗披碱草和尼泊尔酸模叶片中的叶绿素a、叶绿素b、总叶绿素含量显著增加;而鹅绒委陵菜叶片的叶绿素a、叶绿素b、总叶绿素含量在增温后显著减少,类胡萝卜素含量在增温后却显著增加。 增温对3种植物的气体交换产生了显著影响。其中,垂穗披碱草和尼泊尔酸模叶片的光响应曲线在增温后明显高于对照处理,A、E、gs、Pmax、、Rday、AQY和LSP显著增加,而LCP则显著降低;鹅绒委陵菜的光响应曲线在增温后则明显的低于对照处理,A、E、gs、Pmax、、Rday、AQY和LSP显著减少,而LCP则显著增加。 增温后垂穗披碱草和尼泊尔酸模叶片的Fv/Fm、Yield和qP显著增加;而鹅绒委陵菜叶片的Fv/Fm、Yield和qP则显著减少,qN却显著地增加。 8、几种主要植物的抗氧化酶系统对增温的响应 增温使垂穗披碱草和尼泊尔酸模体内抗氧化酶活性和非酶促作用有所提高,植物膜脂过氧化作用降低;鹅绒委陵菜叶片中酶促反应和非酶促反应在增温后也显著提高,但可能由于增温后的土壤干旱超过了鹅绒委陵菜叶的抗氧化保护能力,抗氧化酶活性及非酶促反应(脯氨酸、类胡萝卜素)的提高不足以完全清除干旱诱导形成的过量活性氧,因此叶片的膜脂过氧化程度仍然显著提高。 Enrichment of atmospheric greenhouse gases resulted from human activities such as fossil fuel burning and deforestation has increased global mean temperature by 0.6 ℃ in the 20th century and is predicted to increase in this century by 1.4-5.8 ℃. The global warming will have profound, long-term impacts on terrestrial plants and ecosystems. The ecoologcial consequences arising from global warming have also become the very important issuses of global change research. The terrestrial habitats of high-elevation and high-latitude ecosystems are regarded as the most sensitive to changing climate. The alpine meadow ecosystme, which resulted from the composite effects of mountain extreme climatic factors in Tibetan Plateau, is thus thought to be especially vulnerable and sensitive to global warming. In this paper, the response of plant community and several main species in the alpine meadow of Northewst Sichuan to experimemtal warming was studied by using open-top chambers (OTC). The aim of the this study was to research the warming effects on plant community structure, substance allocation, growth and physiological processes of several mian species, and to explore the biological and ecological mechanism of how the alpine meadow plants acclimate and adapt to future global warming. The results were as follows: 1. Warming effects of OTC The mean soil temperature, soil surface temperature and air temperature in OTC manipulation increased by 0.28℃、0.46℃ and 1.4℃ compared to the control during the growing season. This suggested that the OTC used in our study had increased temperature there. Meanwhile, the OTC manipulation slightly altered thermal conditions, but the same amount of precipitation was supplied to both the OTC manipulation and the control, so higher soil evaporation and plant transpiration in OTC manipulation directly lead to the decrease of soil surface water content. 2. The reponse of community structure to experimental warming The species richness was not changed by the short-term effect of OTC manipulation. However, experimental warming changed the microenvironment of plant community, therefore competitive balances among species were shift, leading to changes in species dominance. In the present study, the dominant plant species in the control plots were some forbs including Potentilla anserine, Geranium pylzowianum, Thlaspi arvense and Arenaria serpyllifolia, however, the importance value of some gramineous grasses including Elymus nutans, Deschampsia caespitosa, Festuca ovina, and some forbs including Euphrasia tatarica and Rumex acetosa significantly increased in OTC. The different biology characteristics and resource utilizations between gramineous grasses and forbs, and enhanced temperature caused change in some environment factors such as soil water content. As a result, the coverage and biomass of gramineous grasses significantly increased in OTC compared to the control, however, the coverage and biomass of forbs singnifciantly decreased in OTC compared to the control. 3. The reponse of plant growing season to experimental warming Both the standing dead and fallen litter biomass in OTC were lower than those in the control in October, and the biomass of aboveground live-vegetation in OTC was higher than that of the control. The results indicated that the senescence of plants was postponed, and the growing season was prolonged in our research. 4. The reponse of community biomass accumulation and its allocation to experimental warming Experimental warming caused the decrease of aboveground live biomass and belowground root biomass except for the aboveground live biomass in October. Experimental warming also had pronounced effects on the pattern of root biomass allocation. In the present study, the root biomass in 0-10cm soil layer increased in OTC manipulation compared to the control, however, the root biomass in the 20-30cm soil layer decreased in OTC manipulation compared to the control. 5. The reponse of community C and N content to experimental warming The C concentration and stock in aboveground live and belowground root both increased in OTC manipulation compared to the control. However, the N concentration and stock in aboveground live and belowground root both decreased in OTC manipulation compared to the control. 6. The reponse of gowth and biomass, C and N alloction of several species to experimental warming Experimental warming significantly increased the height, SLA (specific leaf area) and aboveground biomass of Elymus nutans in OTC manipulation compared to the control. The SLA and total biomass of Rumex acetosa also significantly increased in OTC manipulation compared to control, among the different components of Rumex acetosa, leaf biomass significantly increased, but root biomass significantly decreased in OTC manipulation compared to the control. However, the height, SLA and total biomass of Potentilla anserina significantly decreased in OTC manipulation compared to the control, among the different component of Potentilla anserina, leaf and stem biomass significantly decreased, but root biomass significantly increased in OTC manipulation compared to the control. The LMR (leaf mass ratio), RMR (root mass ratio), R/S (shoot/root biomass ration) and root C concentration of Rumex acetosa significantly increased in OTC manipulation compared to outside control, also, Rumex acetosa allocated relatively more C and N content to leaf and root in response to experimental warming, however, the SMR (stem mass ration) and root N concentration of Rumex acetosa significantly decreased in OTC manipulation compared to outside control, also, Rumex acetosa allocated relatively less C and N content to stem in response to experimental warming. The RMR and R/S of Potentilla anserina significantly increased in OTC manipulation compared to outside control, also, Potentilla anserina allocated relatively more C and N content to root in response to experimental warming, however, the SMR and LMR of Potentilla anserina significantly decreased in OTC manipulation compared to outside control, also, Potentilla anserina allocated relatively less C and N content to leaf in response to experimental warming. 7. The reponse of physiological processes of several species to experimental warming Experimental warming significantly increased chlorophyll a, chlorophyll b and total chlorophyll of Elymus nutans and Rumex acetosa in OTC manipulation compared to outside control. However, chlorophyll a, chlorophyll b, total chlorophyll and carotenoid of Potentilla anserina in OTC manipulation significantly decreased compared to outside control. Experimental warming had pronounced effects on gas exchange of Elymus nutans, Rumex acetosa and Potentilla anserine. In the present study, warming markedly increased the light response curves of Elymus nutans and Rumex acetosa in OTC manipulation compared to outside control, and also singnificantly increased A (net photosynthesis rate), E (transpiration rate), gs (stomatal conductance), Pmax (maximum net photosynthetic rate), Rday (dark respiration rate), AQY (apparent quantum yield) and LSP (light saturation point), but LCP (photosynthetic light compensation) of Elymus nutans and Rumex acetosa in OTC manipulation singnificantly decreased compared to outside control. However, warming markedly decreased the light response curves of Potentilla anserina in OTC manipulation compared to outside control, and also singnificantly decreased A, E, gs, Pmax, Rday, AQY and LSP, but LCP of Potentilla anserina in OTC manipulation singnificantly increased compared to outside control. Experimental warming singnificantly increased the chlorophyll fluorescence kinetics parameters such as Fv/Fm, Yield and qP of Elymus nutans and Rumex acetosa and qN of Potentilla anserina in OTC manipulation, but Fv/Fm, Yield and qP of Potentilla anserina in OTC manipulation singnificantly decreased. 8. The reponse of antioxidative systems of several species to experimental warming Experimental warming tended to increase the activities of antioxidative enzymes and stimulate the role of non-enzymes of Elymus nutans and Rumex acetosa. As a result, MDA content of Elymus nutans and Rumex acetosa decreased. The activities of antioxidative enzymes and non-enzymes of Potentilla anserina also significantly increased in OTC manipulation, but more O2- was produced because of lower soil water content, and the O2- accumulation exceeded the defense ability of antioxidative systems and non-enzymes fuctions. As a result, MDA content of Potentilla anserine still increased in OTC manipulation compared to outside control.
Resumo:
大气臭氧的损耗导致了地球表面具有生物学效应的紫外线-B(UV-B)辐射增强。同时,大气成分变化中除了UV-B辐射增强外,氮沉降是一个新近出现而又令人担忧的环境问题,其来源和分布正在迅速扩展到全球范围,并不断向陆地和水生生态系统沉降。本试验在四川省境内的中国科学院茂县生态站内进行,以云山、冷杉、色木槭和红椋子幼苗为模式植物,从生长形态、光合作用、抗氧化能力和矿质营养等方面研究了青藏高原东缘4种树苗对全球变化-增强UV-B辐射和氮供应(氮沉降)的响应。该试验为室外盆栽试验,包括四个处理:(1)大气UV-B辐射+无额外的氮供应(C);(2)大气UV-B辐射+额外的氮供应(N);(3)增强UV-B辐射+无额外的氮供应(UV-B);(4)增强UV-B辐射+额外的氮供应(UV-B+N)。其目的:一方面有助于丰富我国对全球变化及区域响应研究的全面认识,进一步完善在全球气候变化条件下臭氧层削减和氮沉降对陆地生态系统影响的内容;另一方面,在一定程度上有助于我们更好的理解在全球变化下森林更新的早期过程。具体结果如下: 增强的UV-B辐射在生长形态、光合、抗氧化能力、活性氧和矿质营养方面对4种幼苗都有显著的影响。UV-B辐射增强对幼苗的影响不仅与物种有关,而且,还与氮营养水平相关。总体表现为,高的UV-B辐射导致了色木槭和红椋子幼苗叶片的皱缩和卷曲,并降低了色木槭幼苗的叶片数和叶重,在额外的氮供应下,云杉、冷杉和红椋子的叶重也显著地降低了;色木槭和红椋子幼苗叶片的解剖结构受到了增强的UV-B辐射的影响,增强的UV-B辐射显著地降低了色木槭叶片的栅栏组织厚度,提高了红椋子叶片的厚度;增强的UV-B辐射显著地降低了4种幼苗的单株总生物量、植物地下部分的生长、总叶绿素含量 [Chl (a + b)]、净光合速率和最大量子产量(Fv/Fm),提高了4种幼苗叶片的膜脂过氧化(MDA含量),改变了植物体不同器官中的矿质元素含量;增强的UV-B辐射提高了冷杉、色木槭和红椋子叶片中的过氧化氢含量(H2O2)、超氧负离子(O2-)生成速率,在额外的氮供应下,云杉叶片中的活性氧含量也显著地提高了;在无额外的氮供应条件下,增强的UV-B辐射显著地提高了4种幼苗叶片中的UV-B吸收物质、脯氨酸含量和抗氧化酶的活性(SOD、POD、CAT、GR和APX)。在额外的氮供应条件下,UV-B辐射的增强却显著地降低了冷杉叶片中脯氨酸含量和红椋子叶片中UV-B吸收物质含量,但是,在4种幼苗叶片中,5种抗氧化酶的活性对UV-B辐射的增强没有明显的规律性,增强的UV-B辐射显著地提高了云杉叶片中的POD、SOD和GR的活性,提高了冷杉叶片中的POD和GR活性,提高了色木槭叶片中的POD、SOD和CAT活性和红椋子幼苗叶片中的POD和SOD活性。从这些结果可知,植物在遭受高的UV-B辐射导致的过氧化胁迫时,植物体内形成了一定的保护机制,但是,这种保护不能抵抗高的UV-B辐射对植物的伤害。 额外的氮供应在生长形态、光合、抗氧化能力、活性氧和矿质营养方面对4种幼苗都有一定的影响,不同幼苗对额外的氮供应响应不同,并且受到UV-B辐射水平的影响。在当地现有的UV-B辐射水平下,额外的氮供应显著地提高了幼苗的单株总生物量、植物地下部分的生长、Chl (a + b)、净光合速率(红椋子除外)、UV-B吸收物质(冷杉除外)、脯氨酸含量(红椋子除外)和部分抗氧化酶的活性,降低了H2O2的含量、O2-的生成速率和MDA含量(红椋子除外),改变了植物体内部分矿质元素含量,显著地提高了云杉和冷杉叶片中的Fv/Fm。这些指标总体表明,在当地现有大气UV-B辐射水平下,额外的氮供应对植物的生长和发育是有利的。在增强的UV-B辐射水平下,4种幼苗的生长形态和光合大部分指标都没有受到额外氮供应的影响,额外的氮供应提高了红椋子幼苗的单株总生物量和Chl (a + b)含量,提高了冷杉和色木槭叶片中的活性氧含量和MDA含量,却降低了红椋子叶片中的活性氧含量;额外的氮供应也提高了云杉、色木槭和红椋子叶片中UV-B吸收物质和脯氨酸含量,降低了冷杉叶片中UV-B吸收物质和脯氨酸含量;在抗氧化酶活性方面,额外的氮供应降低了云杉、冷杉叶片中5种抗氧化酶的活性和红椋子叶片中POD和GR的活性,提高了色木槭叶片中的POD和SOD的活性;4种幼苗植物体内的矿质元素含量对额外的氮供应没有显著的规律性。从这些结果可知,在高的UV-B辐射下,额外的氮供应提高了云杉、冷杉和色木槭幼苗对高的UV-B辐射的敏感性,然而,额外的氮供应却促进了红椋子幼苗的生长,原因可能是,在高的UV-B辐射下,额外的氮供应增加了红椋子叶片的厚度、叶重和叶片数,降低了叶片中活性氧含量的结果。表明在高的UV-B辐射水平下,额外的氮供应降低了红椋子幼苗对高的UV-B辐射的敏感性。 在全球变化的趋势下,UV-B辐射增强和氮沉降可能同时存在,我们的研究表明,与大气UV-B辐射+无额外的氮供应处理相比,增强UV-B辐射+额外的氮供应处理显著地降低了幼苗的单株总生物量(红椋子除外)、Chl (a + b)、净光合速率、Fv/Fm(冷杉除外)和MDA含量(红椋子除外),提高了活性氧含量 (云杉除外)、UV-B紫外吸收物质含量(冷杉除外)、脯氨酸含量和部分抗氧化酶的活性,改变了植物体不同器官中的矿质元素含量。结果表明,在当地现有条件下,全球变化(UV-B辐射增强和氮沉降)对云杉、冷杉和色木槭幼苗的生长是不利,尽管植物体内一些抗氧化性指标提高了,然而,却对红椋子幼苗的单株总生物量的累积没有显著的影响。 The depletion of the ozone led to the increase of ultraviolet-B (UV-B) with biological effects in the earth’s surface. At the same time, except for enhanced UV-B radiation, nitrogen deposition was an anxious environmental problem at present, rapidly expanding to the global scope and continuously depositing to land and aquatic ecosystem. The experiment was conducted in Maoxian Ecological Station of Chinese Academy of Sciences, Sichuan province, China. Picea asperata, Abies faxoniana, Acer mono Maxim and Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings were selected as model plants to assess the effects of enhanced UV-B radiation and supplemental nitrogen supply on growth, morphological, photosynthesis, antioxidant and mineral nutrient traits of 4 species seedlings in east Qinghai-Tibetan Plateau. The experiment was potted outdoor, including 4 treatments: (1) ambient UV-B without supplemental nitrogen (control, C); (2) ambient UV-B with supplemental nitrogen (N); (3) enhanced UV-B without supplemental nitrogen (UV-B); (4) enhanced UV-B with supplemental nitrogen (UV-B+N). One hand, it was helpful for enriching our country to comprehensive understanding of the researches in the global change and the region response, further perfecting the effects of the depleted ozone layer and nitrogen deposition on land ecosystem under the global change; the other hand, it was favorable for us to better understanding of the early process of forest renews under the global change. The results were as follows: Enhanced UV-B radiation had significant effects on 4 species seedlings in growth, morphological, photosynthesis, antioxidant and mineral nutrient traits of 4 species seedlings. The effects of enhanced UV-B on plants were not only related with species, but also related with nitrogen nutrient level. Generally, the increase of UV-B radiation led to the shrinkage and curl of leaves in Acer mono Maxim and Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings, and reduced the number of leaf and leaf weight of Acer mono Maxim seedlings, under supplemental nitrogen supply, leaf weight of Picea asperata, Abies faxoniana and Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings significantly also reduced; the anatomical features of leaf in Acer mono Maxim and Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings affected by enhanced UV-B radiation, the increase of UV-B radiation markedly reduced the palisade tissue thickness of Acer mono Maxim leaf and enhanced the leaf thickness of Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings; the enhanced UV-B radiation significantly reduced total biomass per plant of 4 species seedlings, the growth of the underground parts, Chl (a + b), net photosynthetic rate and maximum potential quantum yield of photosynthesis (Fv/Fm), and increased the degree of lipid peroxidation (MDA content) and changed the content of mineral elements in different parts of plants; the enhanced UV-B radiation also increased the rate of superoxide radical (O2-) production and hydrogen peroxide (H2O2) content in leaves of Abies faxoniana, Acer mono Maxim, Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings, under supplemental nitrogen supply, the reactive oxygen species in leaves of Picea asperata seedlings also significantly increased by enhanced UV-B radiation; under without supplemental nitrogen supply, enhanced UV-B radiation evidently induced an increase in UV-B absorbing compounds, proline content and the activities of antioxidant enzymes (SOD, POD, CAT, GR and APX) of leaves in 4 species seedlings. Under supplemental nitrogen supply, enhanced UV-B radiation induced a decrease in proline content of leaves in Abies faxoniana seedlings and UV-B absorbing compounds of leaves in Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings, but, there were no obvious rules in the activities of five antioxidant enzymes of 4 species seedling leaves to enhanced UV-B radiation, enhanced UV-B radiation significantly increased the activities of POD, SOD and GR in Picea asperata leaves, the activities of POD and GR in Abies faxoniana leaves and the activities of POD, SOD and CAT in Acer mono Maxim leaves. The results indicated that some protective mechanism was formed when plants were exposed to enhanced UV-B radiation, but the protection could not counteract the harm of high UV-B radiation on plants. Supplemental nitrogen supply had some effects on 4 species seedlings in growth, morphological, photosynthesis, antioxidant and mineral nutrient traits. The response of 4 species seedlings was different to supplemental nitrogen supply, and was affected by UV-B levels. Under local ambient UV-B radiation, supplemental nitrogen supply significantly increased the total biomass per plant, the growth of underground parts, Chl (a + b), net photosynthetic rate (except for Acer mono Maxim seedlings), UV-B absorbing compounds (except for Abies faxoniana seedlings), proline content (except for Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings) and the activities of some antioxidant enzymes, and reduced H2O2 content, the rate of O2- production and MDA content (except for Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings) and changed the content of mineral elemental in different parts; supplemental nitrogen supply also evidently increased Fv/Fm in Picea asperata and Abies faxoniana seedlings. These results indicated that supplemental nitrogen supply was favorable for the growth of plants under local ambient UV-B radiation. Under enhanced UV-B radiation, mostly parameters in growth and morphology of 4 species seedlings were not affected by supplemental nitrogen supply. Supplemental nitrogen supply increased the total biomass per plant and Chl (a + b) of Swida hemsleyi (Schneid. et Wanger.) Sojak seedling, increased the reactive oxygen species and MDA content in Abies faxoniana and Acer mono Maxim leaves, and reduced the reactive oxygen species in Swida hemsleyi (Schneid. et Wanger.) Sojak leaves; supplemental nitrogen supply also increased UV-B absorbing compounds and proline content in Picea asperata, Acer mono Maxim and Swida hemsleyi (Schneid. et Wanger.) Sojak leaves, decreased UV-B absorbing compounds and proline content in Abies faxoniana leaves; in the activities of antioxidant enzymes, supplemental nitrogen supply significantly reduced the activities of antioxidant enzymes in Picea asperata and Abies faxoniana leaves and the activities of POD and GR in Swida hemsleyi (Schneid. et Wanger.) Sojak leaves, and increased the activities of POD and SOD in Acer mono Maxim leaves; the content of mineral elements in 4 species seedlings was no significantly rule to supplemental nitrogen supply. We knew from the results, under enhanced UV-B radiation, supplemental nitrogen supply made Picea asperata, Acer faxoniana and Acer mono Maxim seedlings more sensitivity to enhanced UV-B radiation, however, accelerated the growth of Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings. The reason was probably that supplemental nitrogen supply increased the leaf thickness, leaf weight and leaf number, reduced the reactive oxygen content of leaf in Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings grown under high UV-B radiation. This showed that supplemental nitrogen supply reduced the sensitivity of Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings to high UV-B radiation. Under the tendency of the global change, enhanced UV-B radiation and nitrogen deposition may probably coexist. The results showed, compared with the treatment of ambient UV-B radiation without supplemental nitrogen supply, the treatment of enhanced UV-B radiation with supplemental nitrogen supply significantly reduced the total biomass per plants (except for Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings), Chl (a + b), net photosynthetic rate, Fv/Fm and MDA content (except for Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings), and increased reactive oxygen content (except for Picea asperata seedlings), UV-B absorbing compounds (except for Abies faxoniana seedlings), proline content and part antioxidant enzymes, and changed the content of mineral elements of different parts. The results indicated that the global change (enhanced UV-B and nitrogen deposition) were not favorable for the growth of plants under local ambient UV-B radiation and nitrogen nutrient level,, though increased some antioxidant indexes, however, the treatment of enhanced UV-B with supplement nitrogen supply did not significantly affect on the biomass accumulation of Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings.
Resumo:
当前大气CO2浓度升高是全球变化的主要趋势之一,CO2浓度升高还会引起全球变暖等其它环境问题,因而CO2浓度浓度升高对植物影响的研究已经成为全球变化领域的焦点。红桦是川西亚高山地区暗针叶林演替初期的先锋树种和演替后期的建群种,在群落演替过程中它对环境因子的响应决定红桦群落的演替进程。本文通过控制CO2浓度的气候室试验,研究了CO2浓度倍增环境下,不同密度水平红桦碳氮固定、分配可能发生的改变,并探讨了升高大气CO2浓度对群体内部竞争的影响。以期通过本研究明确川西亚高山地区代表性物种红桦对未来气候变化的响应,为今后采取措施应对气候变化、妥善进行森林管理提供理论依据和科学指导。主要研究结果如下: 1.升高CO2浓度对红桦幼苗生长的影响以及树皮、树干响应的不同 (1) CO2浓度升高显著促进红桦幼苗的生物量、株高、基茎的生长,同时也改变生物量在体内的分配格局,主要是增加根和主茎、减少叶在总生物量中的比重。(2)树皮和树干对升高CO2浓度的影响有差异,它们对CO2浓度升高的反应程度不同,但反应方向一致。 2.密度的副效应 (1) 增加种植密度对单株生物量、株高和基径的生长具有副效应,也降低升高CO2浓度对红桦生长的正效应。(2) 增加种植密度,显著增加红桦幼苗的群体生物量,从而使红桦群体固定更多的大气CO2气体。可见密度在决定红桦生物量及固碳能力方面具有重要意义。探索适合未来大气CO2浓度升高条件下植物生长的密度,对未来的森林经济生产、生态恢复具有重要意义。 3. 升高CO2浓度对红桦幼苗苗冠结构及冠层内部竞争的影响 (1) 冠幅、冠高、苗冠表面积和苗冠体积等树冠特征均受CO2浓度升高的影响而增加,但是受密度增加的影响而降低。(2) 单位苗冠投影面积叶片数(LDcpa)和单位苗冠体积叶片数(LDcv)均低于相应的现行CO2浓度处理,这主要是由于冠幅和冠高的快速生长所造成的。(3) LDcpa和LDcv的降低表明,红桦在升高CO2浓度的条件下,会作出积极的响应,从而缓解由于群体和个体生长的增加所引起的竞争压力的增加。 4. 升高CO2浓度对红桦幼苗养分元素吸收与分配的影响 (1) CO2浓度升高,植株各器官N、P含量降低,但单株N、P总吸收量均增加。红桦幼苗体内N、P浓度的下降是由于生物量迅速增加引起的稀释效应造成的。(2) CO2浓度升高,N、P向主茎和根的分配增加,向叶片的分配减少,主要是由于前者在总生物量中的比重增加,而后者减少了。(3) CO2浓度升高,氮磷利用效率(NUE和PUE)提高,氮磷累积速率(NAcR和PAcR)显著增加。而NUE和PUE的提高可以有效缓解CO2浓度升高后,亚高山和高山地区森林土壤中养分元素不足对森林生产力的限制。 5. 升高CO2浓度对红桦幼苗群体碳平衡的影响 (1) 升高CO2浓度对植物的光合作用、呼吸速率和生长均具有促进作用。(2) 土壤有机碳含量在实验前期迅速增加,后期积累速率下降。(3) 升高CO2浓度以后,土壤呼吸显著增强;土壤呼吸还具有明显的季节变化。(4) 红桦群体日固碳量受到升高CO2浓度的促进作用。结果(1)-(4)说明所研究群落的碳动态对现行的气候波动是敏感的;所研究群落在作为大气CO2气体的源-汇关系方面至少存在季节间的源汇飘移。(5)种植密度的升高显著增加了群体固碳量。 6. 升高CO2浓度对红桦幼苗生长后期叶片衰老的影响 升高CO2浓度有利于减缓红桦幼苗叶片生长季节末期的衰老。生长季节末期,随着CO2浓度的升高光合速率和可溶性蛋白含量均呈上升趋势,同时MDA(丙二醛)含量下降,保护酶SOD(超氧化物岐化酶)、CAT(过氧化氢酶)活性升高。由此说明,升高CO2浓度有利于减缓生长季节后期叶片的衰老,使叶片维持较高的光合速率,也从生理学的角度支持了本文及前人有关CO2浓度升高促进植物光合和生长的假说及结果。 The increased CO2 concentration is one of the most important problems among global changes. The increase of CO2 will also cause other environmental problems, such as global warming, etc. So the effects of elevated CO2 on plant have drawn sights of many scientists in the research field of global change. Red birch (Betula albosinensis) usually emerges as the pioneer species in initial stage and as constructive species in later stages of forest community succession of the dark coniferous forests in Western Sichuan, China. It’s response to elevated CO2 may determine the succession process of the community where it lives in. By controlling CO2 at the ambient and twice as the ambient level (ambient + 350 umol mol-1) using enclosed-top chambers (ETC), possible effects of elevated CO2 on carbon fixation and allocation under two plantation densities are investigated. The effects of elevated CO2 on competition within canopy of red birch seedlings are also observed in the present paper. We hope to make sure of the effects of elevated CO2 on the representative species, red birch. And so that, our results could provide a strong theoretical evidence and scientific direction for forest management and afforestation under a future, CO2 elevated world. The results are as fowllows: 1. The effects of elevated CO2 on growth and the different responses of wood and bark of red birch seedlings (1) Elevated CO2 increases the growth of seedling biomass, seedling height and basal diameter of red birch. It also changed the biomass allocation in red birch seedlings. The ratio of root and main stem to all biomass is increased and the ratio of leaf is decreased. (2) Tree bark and wood show different response degree but similar response direction to elevated CO2. 2. Negative effects of planting density (1) The increase of planting density showes negative effects on the individual growth of seedling biomass, seedling height and basal diameter of red birch. It also eliminates the positive effects of elevated CO2 on growth of red birch seedlings. (2) Community biomass is increased by the elevated planting density, which means that the high density red birch community could fix more CO2 than the low density one. These results show that planting density plays an important role in determining biomass and carbon fixation ability of red birch community. Thus, exploring proper planting density becomes economically important for the future, CO2 elevated word. 3. The effects of elevated CO2 on crown architecture and competition within canopy of red birch seedlings (1) Crown width, crown depth, crown surface area and crown volume are all increased under the influence of elevated CO2. (2) Leaf number per unit area of projected crown area (LDcpa) and per unit volume of crown volume (LDcv) are lower under elevated CO2. This is resulted from the stimulated growth of tree crown features. (3) The decrease of LDcpa and LDcv indicate that plants will respond forwardly to reduce the possible increase of competition resulted from stimulated growth of individual plant and collectives in conditions of elevated CO2. 4. The effects of elevated CO2 on nutrition accumulation and allocation of red birch seedlings (1) Contents of N and P decrease due to the prompt increase of biomass of plant organs caused by elevated CO2. However, their accumulations increase under elevated CO2. (2) Elevated CO2 increases the allocation of N, P to main stem but reduced its allocation to leaf for that dry weight of the former increased but the dry weight of the later decreased. (3) Using efficiencies of N, P (NUE and PUE) and their accumulation rates (NAcR and PAcR) are found to increase under elevated CO2. Soil nutrition contents are always the limiting factors for plant growth at subalpine and alpine region. The increased NUE and PUE are helpful to eliminate the nutrition limitation in this area in the future world, when CO2 concentration doubles the ambient. 5. The effects of elevated CO2 on carbon balance of red birch communities (1) Net photosynthetic rates (Pn), dark respiration rates (Rd) and growth are all stimulated by elevated CO2. (2) Content soil organic carbon increases sharply at the primary stage of experiments and then the increasing rates decrease to a low level at later stages. (3) Soil respiration rates increase significantly with the elevation of CO2 concentration. (4) The daily carbon fixations of whole community are heightened by elevated CO2. The results (1)-(4) suggest that, the community being studied are sensitive to current climate change; the studied community, as a sink of atmospheric CO2, is pool-sink alternative between seasons. (5) The carbon fixations are increased along the increase of planting densities. 6. The effects of elevated CO2 on physiological features of leaf senescences of red birch seedlings at the later stage of growing season Elevated CO2 helps to postpone the leaf senescences of red birch at the end of the growth season. CO2 enrichment increases the photosynthetic rates, contents of soluble proteins and photosynthetic pigments. And meanwhile contents of malondialdehyde (MDA) decreases and activities of superoxide dismutase (SOD) and catalase (CAT) are both increased. These results suggest that the senescences of red birch leaves are delayed by elevated CO2, which keep the photosynthetic rates at relatively high levels. Our results lend supports to hypothesis and results on stimulated photosynthetic rates and growth from both other researchers and the present paper.
Resumo:
近二十多年来,基于对臭氧层衰减、紫外线B(UV-B)增强的担心,研究者希望了解到紫外线辐射对不同作物的影响情况,增强UV-B辐射条件下是否对作物的生长发育、产量质量构成威胁。在本试验中,我们首先探讨了双子叶作物黄瓜(Cucumis sativus)和大豆(Glycine max)对不同紫外波段的生物效应[分别为B-UVA(315-400 nm),N-UVA(315-340 nm),B-UVB(275-400 nm)和N-UVB(290-340 nm),UV-(>400nm)作对照]。我们观察到所有的UV波段处理都使黄瓜和大豆的生长受到抑制,并且细胞受到不同程度的氧化伤害;UV波段处理的作用效果与不同波段的紫外有效生物辐射剂量有关。处理差异在UV-B波段内部和UV-A波段内部同样存在。植物生长UV辐射公式(BSWF)能很好的预测本试验UV-B波段内的平均植物效应,但不能预测UV-A波段的植物效应。短波UV-A的生物作用强于长波UV-A。光合色素的变化与UV波谱差异和种间差异有关。在高的紫外/可见光背景下,UV-A处理同UV-B同样导致光合色素的降低,但黄瓜类胡萝卜素/叶绿素比例升高。与其他研究者的试验结果比较后,我们认为紫外线B辐射的生物效应一致性很高,但紫外线A波段的生物学效应存在较大争议。因此我们在本试验的基础上仅进行荞麦[苦荞(Fagopyrum tataricum Gaertn.)和甜荞(Fagopyrum esculentum Moench.)]对紫外线B波段的响应研究。 我们对苦荞品种-圆籽荞进行了连续两个生长季节的大田半控制试验以观察UV-B辐射对苦荞生长、发育、产量及叶片色素的影响;试验小区进行降低UV-B、近充足UV-B和增强UV-B辐射处理。我们的试验表明在不同强度UV-B辐射下苦荞的生长、地上部生物量积累及最终产量都有所下降,但苦荞的发育加快;当前条件下的日光紫外线B辐射对植物生长和产量也造成负面影响。植物光合色素被日光及增强UV-B辐射降低;UV化合物及卢丁含量在中低剂量的UV-B辐射强度下显著升高,但在高剂量的增强UV-B辐射下短期升高后迅速下降。我们的试验表明苦荞是一个对UV-B高度敏感的作物。苦荞对UV-B的敏感性与UV-B剂量、外界环境因素及生长季节有关。 单个苦荞品种的试验结果使我们认识到外界UV-B辐射已经对苦荞生长发育构成逆境条件,未来全球气候变化条件下增强紫外线B辐射可能使其处于更不利的生长环境中。因此我们有进行了多个种群进行UV-B响应观察并筛选耐性种群。我们对15个苦荞种群进行增强UV-B辐射处理(6.30 kJ m2 UV-BBE,模拟当地25%的臭氧衰减),我们观察苦荞UV-B辐射效应存在显著的种内差异,UV-B辐射对多数种群具有抑制作用,但对一些种群还有刺激作用。我们采用主成分分析方法与作物UV-B响应指数(RI)来评价苦荞作物UV-B辐射耐性。我们发现作物的UV-B耐性不仅与其原产地背景UV-B强度有关,而且与作物相对生长效率、次生代谢产物含量(如卢丁)及其他因素有关。我们观察到苦荞伸展叶总叶绿素变化与UV-B耐性成正相关;室内苦荞幼苗的UV-B辐射致死试验表明:苦荞种群死亡率与其UV-B耐性成负相关。 此外,我们对甜荞的UV-B辐射响应也进行了初步研究。选取美姑甜荞、巧家甜荞和云龙甜荞进行5个梯度的增强UV-B辐射室外模拟试验。我们观察到UV-B辐射显著降低了甜荞的生长、生物量及产量;并严重影响了甜荞的生殖生长,降低了花序数、种子数和结实率;并且UV-B辐射对甜荞的抑制作用存在显著的剂量效应。三种甜荞品种存在显著的种内差异,其中美姑品种UV-B耐性最强,且膜脂受UV-B辐射氧化伤害最小,这与该品种UV-B辐射下较高的GR酶活性、APX酶活性和PPO酶活性、以及含量更高的抗坏血酸有关。甜荞的次生代谢也受到增强UV-B辐射的影响,其香豆酰类化合物在UV-B辐射下升高显著,而槲皮素含量也在高剂量UV-B辐射下有所增加;卢丁含量依赖UV-B辐射剂量而变化,中低剂量UV-B辐射下其卢丁含量逐渐升高,但在高剂量辐射下逐渐下降。 通过对生长在高海拔地区的荞麦作物(苦荞和甜荞)进行的室外研究,我们认识到作物不同品种存在很大的耐性差异,这就为UV-B耐性育种创造了有利条件。进一步加大荞麦种质资源筛选力度并深入认识荞麦抗性机理,在此基础上通过杂交或其他基因融合手段培育抗性品种,对高剂量UV-B辐射地区的荞麦产量的提高将起到重要推动作用,并使荞麦生产能有效应对未来全球气候变化条件下UV-B辐射可能升高的威胁。 During last few decades, due to concern of ozone layer depletion and enhancement of ultraviolet B radiation(UV-B, 280-315 nm), the agronomist want to know the responses of different crop species to UV-B. In the first experiment of our study, the effect of different UV band [B-UVA(315-400 nm), N-UVA(315-340 nm), B-UVB(275-400 nm), N-UVB(290-340 nm)and UV-(>400nm, as control)] on the cucumber(Cucumis sativus)and soybean(Glycine max)were investigated in growth room. Spectra-dependent differences in growth and oxidation indices existed within UV-A bands as well as UV-B bands. The general biological effects of different band were UV- < B-UVA< N-UVA<N-UVB<B-UVB. The plant growth biologically spectra weighting function(BSWF)matched well with average plant response in UV-B region, but not in UV-A region. Shorter UV-A wavelength imposed more negative impact than longer UV-A wavelength did in both species. The effect on photosynthetic pigment was related to different UV bands and different species. The photosynthetic pigment content was decreased by UV-A spectra as well as UV-B spectra. In comparison with the results of previous studies, we found that the wavelength-dependent biological effect of ultraviolet B radiation has high consistency, but the biological effect of ultraviolet-A radiation was inconsistent. We narrow our following study on the effect of ultraviolet B radiation on the buckwheat(tartary buckwheat and common buckwheat). The tartary buckwheat(Fagopyrum tataricum Gaertn.)cultivars Yuanziqiao was grown in the sheltered field plots for two consecutive seasons under reduced, near-ambient and two supplemental levels of UV-B radiation. The crop growth, photosynthetic pigments, total biomass, final seed yield and thousand-grain weight were decreased by near-ambient and enhanced UV-B radiation, while crop development was promoted by enhanced UV-B radiation. Leaf rutin concentration and UV-B absorbing compound was generally increased by UV-B with the exception of 8.50 kJ m-2 day-1 supplemental levels. Our results showed that tartary buckwheat is a potentially UV-B sensitive species. Study on one cultivars showed that ambient solar radiation had present a stress to tartary buckwheat. This makes it necessary to observe the UV-B response of many cultivars and screen tolerant cultivars. Fifteen populations of tartary buckwheat were experienced enhanced UV-B radiation simulating 25% depletion of the stratospheric ozone layer in Kunming region, and plant responses in growth, morphology and productivity were observed. Principal components analysis(PCA)was used to evaluate overall sensitivity of plant response to UV-B as well as response index. The different populations exhibited significant differences in responses to UV-B. The photosynthetic pigments of young seedlings were also affected significantly under field condition. On the other hand, the healthy seedlings of different populations were exposed to the high level of UV-B radiation in growth chambers to determine the plant lethality rate. The plant tolerance evaluated by multivariate analysis was positively related to total plant chlorophyll change, but negatively related to lethality rate. In other hand, the UV-B responses of the other important cultivated buckwheat species, common buckwheat(Fagopyrum esculentum Moench.), were also studied preliminarily. Three widespread cultivated variety(Meigu, Qiaojia and Yunlong cultivars)were provided with five level of enhanced UV-B radiation outdoors. We observed that the crop growth, development and production were significantly decreased, and reproductive production, like anthotaxy number, seed number and seed setting ratio, was also decreased. Dose-dependent inhibition effect caused by enhanced UV-B radiation also existed in common buckwheat. Significant intraspecific difference existed in those three cultivars. The Meigu cultivars with dwarfed growth and lower production have highest UV-B tolerance as well as lowest damage in cell membrane, this could be associated with profound enhancements of glutathione reductase(GR)activity, ascorbate peroxidase activity and polyphenol oxidase activity as well as higher ascorbic acid concentration. The secondary metabolism was also affected by UV-B radiation, with profound elevation of coumarin compound and moderate increase of quercetin concentration. Rutin concentration was peaked in 5kJ m-2 UV-B. The contrasting effect of UV-B radiation on different populations indicated that there existed abundant genetic resources for selecting tolerant populations of common and tartary buckwheat. Much effort needed be pose on screening of buckwheat germplasm and clarification of mechanism of buckwheat tolerance to UV-B. On this base the tolerant cultivars could be bred by hybridization and other gene transfusion method, this would help increase buckwheat yield in high ambient UV-B region and counteract the effect of possible enhanced UV-B radiation in future.
Resumo:
人类向大气中排放的大量氮氧化合物和氟氯烃类化合物(CFC’s)引起臭氧分子的分解,导致到达地球表面的紫外辐射增加,特别是UV-B辐射增强。本项目以青杨组杨树为模式植物,从形态和生理方面研究了来自不同UV-B背景下的康定杨与青杨在增强UV-B下的反应及其反应差异,并探讨了干旱、施肥对它们抗UV-B能力的影响。杨树具有分布广、适应性强、在生态环境治理和解决木材短缺方面均占有重要位置,研究成果可为生态系统的恢复与重建提供理论依据和科学指导。主要研究结果有以下: 1. 在温室中经过增强UV-B处理,杨树的外部形态及生理活动受到了一定程度的影响。增强UV-B导致康定杨、青杨的生物量、叶面积及节间长度降低,叶片增厚,SOD活性升高,膜伤害增加,而对叶片数目、R/S、叶绿素A、叶绿素B及整个叶绿素含量没有影响。两种杨树对UV-B胁迫的响应存在差异:在增强UV-B条件下,青杨的植株高度、生物量、叶面积、脯氨酸含量、长期用水效率受到的影响大于康定杨,相比而言,康定杨在比叶面积、叶片厚度、可溶性糖含量、UV-B吸收物质的含量及SOD和GPX活性方面增加的程度大于青杨。这些区别说明,来自于高海拔的康定杨比来自于低海拔的青杨对增强UV-B 具有更强的耐性。我们认为二者在叶片厚度、比叶面积、UV-B吸收物质含量及SOD、GPX活性差异是导致对增强UV-B耐性不同的原因。 2. 干旱与增强UV-B对杨树的生长和生理特性均产生了影响,而且两种胁迫共同作用时干旱表现减弱或加剧了UV-B对杨树某些形态和生理特性的影响。 据试验结果,干旱显著地降低了杨树的株高、叶片数目、叶面积,增加了叶片厚度,促进ABA的积累,提高了CAT活性。对于干旱,两种杨树之间也表现出了一定的差异性。可溶性蛋白质和脯氨酸在青杨叶片中得到显著积累,而在康定杨中没有变化。此外,CAT、长期用水效率在康定杨中受到的影响更加明显。长期用水效率的不同变化趋势说明两种杨树对水分胁迫采用了不同的用水策略,康定杨采用的是节水用水策略,提高用水效率,而青杨采用的是耗水的用水策略。根据干旱对叶面积、脯氨酸、ABA含量、CAT活性及长期用水效率等方面的影响,我们认为来自高海拔地区的康定杨比来自低海拔的青杨有更大的耐旱性,这是对生长环境长期适应的结果。在高海拔地区,因霜冻常带来土壤水分不可利用,降低了根系对水分的吸收,树木容易受到的生理性干旱。另外,高海拔的地区低的气温使植株对严寒有较强的耐性,减少了水分的需要。 生长于增强UV-B下的康定杨和青杨植株表现为高度降低,叶面积缩小,比叶面积增加;叶片栅栏组织、海绵组织均受到增强UV-B的影响,其厚度的增加导致整个叶片变厚。增强UV-B还显著提高了杨树的APX活性、UV-B吸收物质含量,而对叶片数目、ABA、可溶性蛋白质含量及CAT活性没有产生影响。试验中也观察到了两种杨树对增强UV-B响应的差异:与康定杨相比,在增强UV-B下青杨株高、叶面积降低的程度更大一些,SOD活性显著提高。另外UV-B吸收物质受到的影响不同。根据这些差别,高海拔的康定杨(3500 m)比来自低海拔的青杨(1500 m)增强UV-B有较强的耐性。 与水分充足情况下UV-B对植株的影响相比,干旱对杨树抗增强UV-B产生了一定的影响,表现为加剧或减弱UV-B对植物的影响,但这种影响与形态、生理指标有关。当干旱与增强UV-B共同作用时,杨树植株的株高、叶面积进一步降低、叶片进一步增厚。就脯氨酸的积累的而言,在没有水分胁迫时,增强UV-B促使它显著增加,而在干旱处理下这种效果变得不明显。干旱对增强UV-B的影响还与杨树的种类有一定的关系。在康定杨中,干旱减弱了增强UV-B对栅栏组织与海绵组织的影响,且在植株高度、叶面积上表现出累加效应,而在CAT上交互作用显著;但在青杨中干旱则加剧增强UV-B对栅栏组织与海绵组织的影响,在植株高度、叶面积及比叶面积上表现出显著的交互作用。据碳同素分析,在水分充足的条件下,无论是康定杨,还是青杨,增强UV-B均导致其长期用水效率的提高,然而当两种胁迫共同作用时,长期用水效率则表现出差异,在青杨中,长期用水效率得到进一步增高,而康定杨中干旱的效应被增强UV-B所减轻。 3. 田间试验表明,杨树的生长、生理特征都受到养分和增强UV-B的影响。施肥对杨树的影响表现为:提高了叶面积、生物量及SOD的活性,降低了抗坏血酸含量。对于施肥作用,两种杨树的反应也有区别:在康定杨中施肥显著增加了的叶片长度、宽度及光合色素的含量,降低了净光合速率、气孔导度及胞间CO2浓度;在青杨中,则SOD、GPX、APX活性表现增加。从试验看出,施肥对来自于高海拔地区的康定杨(3500 m)的影响较大,对来自低海拔的青杨(1500 m)影响较小,这与它们对原产地的生境适应有一定关系。在康定杨生长的高海拔地区,低温度和湿度不能为地上凋落物或土壤中的根分解提供理想的条件,造成当地土壤的低养分状况,所以当肥料施用以后,效果显著。 经过增强UV-B处理,杨树叶片中UV-B吸收物质含量、GPX的活性得到提高,而脯氨酸、丙二醛、可溶性蛋白质、叶绿素及类胡萝卜素含量没有受到影响。对于增强UV-B两种杨树受到的影响也有所不同:在青杨中增强UV-B导致叶面积缩小,生物量、净光合速率降低,APX的活性及长期用水效率的提高,而对康定杨的这些指标没有产生显著影响,相反抗氧化酶的活性明显高于青杨。这些差异性是由于两种杨树对原产地不同UV-B背景的长期适应结果。康定杨长期生长在较高UV-B环境中,对UV-B有较强的耐性。而青杨适应于较低的UV-B环境,对增强UV-B较为敏感。 试验中施肥也影响了植株对增强UV-B的反应,不过这种影响与杨树的种类及测定指标有一定的相关性。例如,在缺肥的情况下,青杨的长期用水效率和康定杨的叶绿素含量都受到增强UV-B的显著影响,而施肥以后这种影响变得不显著。在缺肥的条件下,GPX、APX在青杨中的活性、GPX在康定杨中的活性对增加UV-B反应不敏感;而施肥以后则变化显著,同样胞间CO2浓度在康定杨也有类似的变化。 For past decades, Ultraviolet radiation, especially UV-B reaching the Earth’s surface increased because of depletion of ozone layer resulted from emission of NxO and CFC’s from human activities. In this experiment, different species of Populus section Tacamahaca Spach from different UV-B background were selected as a model plant to assess the effects of enhanced UV-B radiation. Morphological and physiological traits induced by enhanced UV-B were observed and the different responses between P. kangdingensis and P. cathayana were discussed, furthermore the influences of drought and fertilizer on responses induced by enhanced UV-B were studied. Since poplars play an important role in lumber supply, and are important component of ecosystems due to their fast growth and wide adaptation, the study could provide a strong theoretical evidence and scientific direction for the afforestation, and rehabilitation of ecosystem. The results are as follows: 1. The experiment conducted in a greenhouse indicated that morphological and physiological traits of two poplars were affected by enhanced UV-B radiation. Enhanced UV-B radiation not only reduced biomass, leave area and internode length, but also increased leaf thickness and SOD activity as well as MDA concentration and electrolyte rate. However, no significant changes in leaf numbers, root shoot ratio, and total chlorophyll and chlorophyll component were observed. There were different responses to enhanced UV-B radiation between two species. Compared with P. kangdingensis, cuttings of P. cathayana, exhibited lower height increment and smaller leaf area. In addition, there were significant differences in free proline, soluble protein, and UV-B absorbing compounds, and the activity of SOD and GPX, long-term WUE between them. Differences in plant height, biomass, leaf area, free proline concentration, and long-termed WUE showed that P. cathayana were more affected by enhanced UV-B radiation than P. kangdingensis. In contrast, more increase of specific leaf mass, leaf thickness, and soluble sugar, and UV-B absorbing compounds, and activity of SOD and GPX were observed in P. kangdingensis. According to these results, we suggested that P. kangdingensis from high elevation, which adapted to higher UV-B environments, had more tolerance to enhanced UV-B than P. cathayana from low elevation, which adapted to lower UV-B environment. We believe it was the difference of leaf thickness, specific leaf mass, and UV-B absorbing compounds as well as the activity of SOD and GPX resulted in lower adaptation of P. cathayana to enhanced UV-B radiation. 2. Growth and physiological traits of two poplars were affected by both drought and enhanced UV-B radiation. Moreover, it was observed that when two stresses applied together drought could exacerbate UV-B effects or decrease sensitivity to UV-B. In the experiment, drought significantly decreased plant height, leaf numbers, leaf area, and increased leaf thickness, and ABA, and CAT activity of two poplars. There were significant interspecific differences to drought stress. Exposed to drought, soluble protein and proline concentration were increased in P. cathayana but not in P. kangdingensis. However, more changes in CAT and long-term WUE were observed in kangdingensis. Different change in long-term WUE suggests that two poplars adapted different water-use strategies. P. kangdingensis employ a conservative water-use strategy, whereas P. cathayana employ a prodigal water-use strategy. Based on the differences in leaf area, accumulation of free proline and ABA, CAT activity as well as long-term WUE, we believed that P. kangdingensis from high elevation had a greater tolerance to drought than P. cathayana from low elevation,which is the result of adaptation to local environment. In high elevation area, trees are prone to suffer from physiological drought because of un-movable water caused by frost. Besides lower temperature enable the plants had greater adaptability to frost as a results the requirement of water is reduced Enhanced UV-B radiation decreased shoots height, leaf area, and increased specific leaf mass and thickness of palisade and sponge layer as well as APX activity and UV-B absorbing compounds in both species. Whereas, leaf numbers, ABA content, soluble protein and CAT activity showed no differences to enhanced UV-B radiation. Interspecific differences were also observed. Compared with P. kangdingensis, P. cathayana showed lower shoot height and smaller leaf area, higher SOD activity. Besides, variation in UV-B absorbing compounds was found. These differences suggested that P. kangdingensis from high elevation (3500 m) was more tolerant to enhanced UV-B radiation than P. cathayana from low elevation (1500 m). Compared with morphological and physiological changes induced by enhanced UV-B radiation under well-watered conditions, drought exacerbated or decreased these changes. However, these effects vary with parameters measured. When two stresses applied together, shoot height and leaf area further decreased while leaf thickness further increased. Under well-watered conditions, enhanced UV-B radiation significantly increased proline content, but such effect was not observed under drought conditions. The effect of drought on enhanced UV-B radiation was related to species. For example, drought reduced the effects of enhanced UV-B radiation on palisade parenchyma and sponge mesophyll in P. kangdingensis, and additive effects in shoot height and leaf area and interactive effect CAT activity were observed. In contrast, for P. cathayana drought significantly exacerbated the effects of enhanced UV-B radiation on palisade parenchyma and sponge mesophyll; there were noticeable interaction in shoot height, leaf area and specific leaf mass. As far as long-term WUE is concerned, it was increased by enhanced UV-B radiation under well-watered conditions in both species. While different effect was observed between two species in combination of two stresses. Long-term water use efficiency was further increased in P. cathayana whereas the effect was less significant in P. kangdingensis. 3. The field experiment showed that growth and physiological traits of poplars were affected by nutrition and enhanced UV-B radiation. Fertilization significantly increased leaf area, biomass and SOD activity, reduced Ascorbic acid concentration. There was interspecific difference in response to fertilization. For P. kangdingensis, fertilization significantly increased leaf width, leaf length and photosynthetic pigments content while net photosynthetic rate and stomatal conductance, intercellular CO2 concentration were significantly decreased. However, for P. cathayana, these parameters were unaffected except the increase of SOD, GPX and APX activity. From above, it could concluded that P. kangdingensis from high elevation was more affected by fertilization than P. cathayana, This difference was due to adaptation to local environment., The low temperature and moisture where P. kangdingensis was collected can not provided optimum to decompose roots and litter fall as a result the nutrition in soil was poor. Exposed to enhanced UV-B radiation, for both species UV-B absorbing compounds and GPX activity were significantly increased while proline, MDA, soluble protein, chlorophyll, carotenoids were not affected. Different responses were also observed between the two species. Enhanced UV-B radiation caused significant decreases in leaf area, biomass, net photosynthetic rate and increase in APX activity and long-term WUE in P. cathayana but not in P. kangdingensis. In addition, activity in antioxidant enzymes was much higher in P. kangdingensis than in P. cathayana. In the experiment fertilization affected responses of cuttings to enhanced UV-B radiation, but it concern species and parameters measured. Long-term WUE in P. cathayana and chlorophyll in P. kangdingensis were significantly increased by enhanced UV-B radiation under non-fertilization treatments while the increase was not found under fertilization treatment. In contrast, under no fertilization treatment enhanced UV-B radiation did not affected GPX and APX activity in P. cathayana and GPX in P. kangdingensis while significant increase appeared after application of fertilization. Similar effect of enhanced UV-B radiation on intercellular CO2 concentration in P. kangdingensis was observed.
Resumo:
由于人类活动所引起的地球大气层中温室气体的富集已导致全球地表平均温度在20 世纪升高了0.6 ¡æ,并预测在本世纪将上升1.4-5.8 ¡æ。气候变暖对陆地植物和生态系统产生深远影响,并已成为全球变化研究的重要议题。位于青藏高原东部的川西亚高山针叶林是研究气候变暖对陆地生态系统影响的重要森林类型。森林采伐迹地和人工云杉林下作为目前该区人工造林和森林更新的两种重要生境,二者截然不同的光环境对亚高山针叶林不同物种更新及森林动态有非常重要的影响。 本文以青藏高原东部亚高山针叶林几种主要森林树种为研究对象,采用开顶式增温法(OTCs)模拟气候变暖来研究增温对生长在两种不同光环境下(全光条件和林下低光环境)的几种幼苗早期生长和生理的影响,旨在从更新角度探讨亚高山针叶林生态系统不同树种对气候变暖在形态或生理上的响应差异,其研究结果可在一定程度上为预测气候变暖对亚高山针叶林物种组成和演替动态提供科学依据,同时也可为未来林业生产管理者提供科学指导。 1、与框外对照相比,OTCs 框内微环境发生了一些变化。OTCs 框内与框外对照气温年平均值分别为5.72 ¡æ和5.21 ¡æ,而地表温度年平均值分别为5.34 ¡æ和5.04 ¡æ,OTCs 使气温和地表年平均温度分别提高了0.51 ¡æ和0.34 ¡æ;OTCs框内空气湿度年平均值约高于框外对照,二者分别为90.4 %和85.3 %。 2、增温促进了三种幼苗生长和生物量的积累,但增温效果与幼苗种类及所处的光环境有关。无论在全光或林下低光条件下,增温条件下云杉幼苗株高、地径、分支数、总生物量及组分生物量(根、茎、叶重)都显著地增加;增温仅在全光条件下使红桦幼苗株高、地径、总生物量及组分生物量(根、茎、叶重)等参数显著地增加,而在林下低光条件下增温对幼苗生长和生物量积累的影响效果不明显;冷杉幼苗生长对增温的响应则与红桦幼苗相反,增温仅在林下低光条件下对冷杉幼苗生长和形态的影响才有明显的促进作用。 增温对三种幼苗的生物量分配模式产生了不同的影响,并且这种影响也与幼苗所处的光环境有关。无论在全光或林下低光环境下,增温都促使云杉幼苗将更多的生物量分配到植物地下部分,从而导致幼苗在增温条件下有更高的R/S 比;增温仅在林下低光条件下促使冷杉幼苗将更多的生物量投入到植物叶部,从而使幼苗R/S 比显著地降低;增温在全光条件下对红桦幼苗生物量分配的影响趋势与冷杉幼苗在低光条件下相似,即增温在全光条件下促使红桦幼苗分配更多的生物量到植物同化部分—叶部。 3、增温对亚高山针叶林生态系统中三种幼苗气体交换和生理表现的影响总体表现为正效应(Positive),即增温促进了几种幼苗的生理活动及其表现:(i)无论在全光或林下低光环境下,增温使三种幼苗的光合色素含量都有所增加;(ii)增温在一定程度上提高了三种使幼苗的PSII 光系统效率(Fv/Fm),从而使幼苗具有更强的光合电子传递活性;增温在一定程度使三种幼苗潜在的热耗散能力(NPQ)都有所增强,从而提高幼苗防御光氧化的能力;(iii)从研究结果来看,增温通过增加光合色素含量和表观量子效率等参数而促进幼苗的光合作用过程。总体来说增温对幼苗生理过程的影响效果与幼苗种类及所处的光环境有关,增温仅在全光条件下对红桦幼苗光合过程的影响才有明显的效果,而冷杉幼苗则相反,增温仅在低光条件下才对幼苗的生理过程有显著的影响。 4、增温对三种幼苗的抗氧化酶系统产生了一定的影响。从总体来说,增温使几种幼苗活性氧含量及膜脂过氧化作用降低,从而在一定程度上减轻了该区低温对植物生长的消极影响;增温倾向表明使三种幼苗体内抗氧化酶活性和非酶促作用有所提高,从而有利于维持活性氧代谢平衡。但增温影响效果与幼苗种类所处的光环境及抗氧化酶种类有关,增温对冷杉幼苗抗氧化酶活性的影响仅在林下低光环境下效果明显,而对红桦幼苗抗氧化酶活性的影响仅在全光条件下才有明显的效果。 总之,增温促进了亚高山针叶林生态系统中三种幼苗的生长和生理表现,但幼苗生长和生理对增温的响应随植物种类及所处的光环境不同而变化,这种响应差可能异赋予了不同植物种类在未来气候变暖背景下面对不同环境条件时具有不同的适应力和竞争优势,从而对亚高山针叶林生态系统物种组成和森林动态产生潜在的影响。 Enrichment of atmospheric greenhouse gases resulted from human activities suchas fossil fuel burning and deforestation has increased global mean temperature by 0.6¡æ in the 20th century and is predicted to increase it by 1.4-5.8 ¡æ. The globalwarming will have profound, long-term impacts on terrestrial plants and ecosystems.The ecoologcial consequences arising from global warming have also become thevery important issuses of global change research. The subalpine coniferous forests inthe eastern Qinghai-Tibet Plateau provide a natural laboratory for the studying theeffects of climate warming on terrestrial ecosystems. The light environment differssignificantly between clear-outs and spruce plantations, which is particularlyimportant for plant regeneration and forest dynamics in the subalpine coniferous forests. In this paper, the short-term effects of two levels of air temperature (ambient andwarmed) and light (full light and ca. 10% of full light regimes) on the early growthand physiology of Picea asperata, Abies faxoniana and Betula albo-sinensis seedlingswas determined using open-top chambers (OTCs). The aim of the present study wasto understand the differences between tree species in their responses to experimentalwarming from the perspective of regeneration. Our results could provide insights intothe effects of climate warming on community composition and regeneration behavior for the subalpine coniferous forest ecosystem processes, and provide scientificdirection for the production and management under future climate change. 1. The OTCs manipulation slightly altered thermal conditions during the growingseason compared with the outside chambers. The annual mean air temperature andsoil surface temperature was 5.72 and 5.34 ¡æ (within the chambers), and 5.21 and5.04 ¡æ (outside the chambers), respectively. The OTCs manipulation increased airtemperature and soil surface temperature by 0.51 and 0.34 ¡æ on average, respectively.Air relative humidity was slightly higher inside the OTCs compared with the controlplots, with 90.4 and 85.3 %, respectively. 2. Warming generally stimulated the growth and biomass accumulation of thethree tree species, but the effects of warming on growth and development variedbetween light conditions and species. Irrespective of light regimes, warmingsignificantly increased plant height, root collar diameter, total biomass, componentbiomass (stem, foliar and root biomass) and the number of branches in P. asperataseedlings; For A. faxoniana seedlings, significant effects of warming on all the tested parameters (plant height, root collar diameter, total biomass, and component biomass) were found only under low light conditions; In contrast, the growth responses of B.albo-sinensis seedlings to warming were found only under full light conditions. Warming had pronounced effects on the pattern of carbon allocation. Irrespectiveof light regimes, the P. asperata seedlings allocated relatively more biomass to rootsin responses to warming, which led to a higher R/S. Significant effects of warming onbiomass allocation were only found for the A. faxoniana seedlings grown under lowlight conditions, with significantly increased in leaf mass ratio (LMR) and decreasedin R/S in responses to warming manipulation. The carbon allocation responses of B.albo-sinensis seedling to warming under full light conditions were similar with theresponse of A. faxoniana seedlings grown under low light conditions. Warmingsignificantly decreased root mass ratio (RMR), and increased leaf mass ratio (LMR)and shoot/root biomass ratio (S/R) for the B. albo-sinensis seedlings grown under full light conditions. 3. Warming generally had a beneficial effect on physiological processes of dominant tree species in subalpine coniferous forest ecosystems: (i) Warming markedincreased the concentrations of photosynthetic pigments in both tree species, but theeffects of warming on photosynthetic pigments were greater under low lightconditions than under full light conditions for the two conifers; (ii) Warming tended toenhance the efficiency of PSII in terms of increase in Fv/Fm, which was related tohigher chloroplast electron transport activity; and enhance non-radiative energydissipation in terms of in increase in NPQ, which may reflect an increased capacity inpreventing photooxidation; (iii) Warming may enhance photosynthesis and advancephysiological activity in plants by increasing photosynthetic pigment concentration,the efficiency of PSII and apparent quantum yield (Φ) etc. From the results, theeffects of warming on seedlings’ physiological performance varied between lightenvironment and species. The effects of warming on photosynthesis performance of B.albo-sinesis seedlings were pronounced only under full light conditions, while thephysiological responses of A. faxoniana seedlings to warming were found only underthe 60-year plantation. These results provided further support for the observationsabove on growth responses of seedlings to warming. 4. Warming had marked effects on antioxidative systems of the three seedlings.Warming generally decreased H2O2 accumulation and the rate of O2- production, andalleviated degree of lipid peroxidation in terms of decreased MDA content, whichalleviated to some extent the negative effects of low temperature on the plant growthand development in this region; Warming tended to increase the activities ofantioxidative enzymes and stimulate the role of non-enzymatic AOS scavenging,which helped to create an balance in maintaining AOS metabolites for the threeseedlings. Nevertheless, the effects of warming on antioxidative defense systems werepronounced only under the 60-year plantation for the A. faxoniana seedlings. Incontrast, the marked effects of warming on antioxidative defense systems for the B.albo-sinesis seedlings were found only under the full light conditions. In sum, warming is considered to be generally positive in terms of growth andphysiological process. However, the responses of growth and physiology performanceto warming manipulation varied between species and light regimes. Competitive and adaptive relationships between tree species may be altered as a result of responsedifferences to warming manipulation, which is one mechanism by which globalwarming will alter species composition and forest dynamics of subalpine coniferousforest ecosystems under future climate change.
Resumo:
碳水化合物按其存在的形式可分为结构性碳水化合物和非结构性碳水化合物两种。前者主要用于植物体的形态建成;后者是参与植物生命代谢的重要物质。迄今为止,有关CO2浓度升高对植物叶片中的碳水化合物含量的研究较多,而对其它器官中碳水化合物含量以及碳水化合物在植物体内的分配响应研究较少。碳水化合物含量在植物各器官中的变化能够反映光合同化产物在叶和茎、枝和根中的转运情况;碳水化合物的分配与植物的生长模式相关,它的变化会对植物的生长情况产生影响。因此,为全面认识植物生理生化与生长过程对大气CO2浓度升高响应情况,需要对CO2浓度升高条件下植物体内碳水化合物的含量及分配变化进行深入的研究与探讨。本文应用自控、独立、封闭的生长室系统,研究了红桦幼苗根、茎、叶和枝的碳水化合物含量以及分配格局对大气CO2浓度升高(环境CO2浓度+350 µmol·mol-1) 的响应。研究结果表明:1) CO2浓度升高使红桦幼苗叶片中的非结构性碳水化合物含量显著增加。这可能会对光合作用造成反馈抑制,降低光合速率。2) CO2浓度升高使红桦幼苗根、茎和枝中的还原糖、蔗糖、总可溶性糖、淀粉和总的非结构性碳水化合物(TNC) 含量显著增加。说明CO2浓度升高促进了碳水化合物由叶片向枝、茎和根中的运输转移,支持了Finn和Brun的假设。3) 在总的非结构性碳水化合物(TNC) 中,淀粉所占比例最大。同样地,CO2浓度升高使TNC含量增加的部分中,淀粉所占的比例也最大。在叶片、枝、茎和根中淀粉含量增加部分占TNC含量增加部分的91.45%、88.23%、83.23%和82.01%。4) CO2浓度升高使红桦幼苗根、茎、叶和枝内的纤维素含量有增加的趋势,但未达到显著水平。需要进一步研究长期CO2浓度升高下,纤维素含量的响应程度。5) CO2浓度升高使碳水化合物在红桦幼苗体内的分配发生了改变。红桦幼苗体内碳水化合物分配变化的一致趋势是由地上部分向地下部分分配转移。其中,测定的所有碳水化合物均向根中分配增多。同时,CO2浓度升高使红桦幼苗的根冠比显著增大;根系干重显著增加。这些结果支持了Gorissen 和Cotrufo的假设,即碳水化合物向根中分配增多是根冠比增大的主要原因。6) CO2浓度升高使红桦幼苗体内的氮含量显著下降。氮含量的下降可能主要是由生长的加快和TNC (主要是淀粉) 含量的增加对氮的稀释造成的。Carbohydrates found in plants are frequently grouped into two different classes:structural carbohydrates and non-structural carbohydrates. The former mainlyconstruct the plant basic framework, while the latter are essential for plant growth andmetabolism. As yet there is lack of information on the effects of elevated CO2concentration on carbohydrate contents in stem, branch and root of plant, and oncarbohydrate allocation in organs of plant although there have been many reports onthe responses of carbohydrate contents to elevated CO2 concentration in plant foliages.A shift of carbohydrate contents in plant reflects a change in transporting ofphotosynthetic production from leaf to stem, branch and root of plant. The allocationof carbohydrates that is correlated to plant growth patterns affects plant growth. Thus,in order to understand the influences of elevated CO2 on biochemical process,physiological change and plant growth well, the response of carbohydrate contentsand allocation in plant to elevated CO2 should be further investigated. In our study, theeffects of elevated CO2 on carbohydrate contents and their allocation between leaf,stem, branch and root tissue of Betula albosinensis seedlings were determined. Theseedlings were grown in independent and enclosed-top chambers. Chambers werecontrolled to reproduce ambient (CK) and ambient + 350 µmol·mol-1 CO2 (EC)concentration for 1 year. The results here showed that,1) Elevated CO2 significantly increased non-structural carbohydrate contents in leafof red birch seedlings. This will reduce photosynthetic rate.2) Elevated CO2 also significantly increased non-structural carbohydrate contentsin root, stem and branch of red birch seedlings. These findings supported thehypothesis that elevated CO2 accelerated carbohydrates from leaf to branch, stem androot.3) Starch makes up the largest parts of total non-structural carbohydrate. In thesame way, the increase of starch plays a main role in the increase of totalnon-structural carbohydrate under elevated CO2. In leaf, branch, stem and root, theincrements of starch contents comprised 91.45%, 88.23%, 83.23% and 82.01% of theincrements of total non-structural carbohydrate contents.4) Under elevated CO2 the cellulose contents have an increasing tendency in redbirch seedlings. It is needed to investigate the effects of long-term elevated CO2 oncellulose contents in plant.5) There are significant CO2 effects on the allocation of carbohydrate in organs ofred birch seedlings. Under elevated CO2 more carbohydrates were allocated to root.Moreover, CO2 enrichment significantly increased the root to shoot ratio of red birchseedlings and the dry weight of roots. These results supported Gorissen and Cotrufo ‘shypothesis that increase of carbohydrate allocation to root mostly contributed to theincrease of root to shoot ratio.6) Elevated CO2 brought about a reduction in the nitrogen contents of leaf, stem,branch and root. The decline of nitrogen contents under elevated CO2 is mainlycaused by the dilution effects of increasing starch level and growth of red birchseedlings.
Resumo:
杨树具有分布广、适应性强的特征,在生态环境治理和解决木材短缺方面均占有重要位置。青杨(Populus cathayana Rehd.)是青杨派树种的重要成员之一,也是生长较迅速、易繁殖的重要杨树资源。本研究选取了来自不同气候地区的青杨两种群为材料,采用植物生态学、生理学和生物化学的研究方法,系统地研究了青杨对干旱与遮荫、干旱与外源脱落酸(ABA)喷施的生长、形态、生理和生化响应及种群间差异,研究成果可为我国干旱半干旱地区的造林以及生态恢复提供理论依据和科学指导。主要研究结论如下:1.青杨在干旱胁迫下的适应机制为:生长性状及生物量的分配变化:干旱胁迫下虽然植株生长受抑,株高、基茎及各部分生物量都显著减小,但有相对较多的生物量向根部分配,根/冠比以及细/粗根比增加。青杨对干旱胁迫的光合作用表现为:干旱胁迫降低了青杨的净光合速率、蒸腾速率、气孔导度以及光合氮利用效率,提高了瞬时用水效率。干旱还引起了活性氧的产生,使得膜脂过氧化产物丙二醛(MDA)增加,同时也增强了植物抗氧化酶系统(如超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)活性的增加)及非酶系统的能力(如抗坏血酸(AsA)含量的增加)。干旱降低了植物叶片的相对含水量,而促进了渗透调节物质(游离脯氨酸及可溶性糖)的积累,增加了植物的渗调能力。干旱下青杨两种群的内源ABA含量显著增加,碳同位素组分(δ13C)也显著提高。这些结果证明植物遭受干旱胁迫后发生一系列的形态、生理和生化响应,这些变化能提高植物在干旱下的存活和生长能力。2.青杨两种群对干旱胁迫反应的种群差异:与来自湿润地区的汉源种群相比,来自干旱地区的乐都种群在干旱条件下生物量向根系分配的可塑性更强,同时具有更强的抗氧化系统能力,所受到活性氧的伤害也更少,并且累积更多的脯胺酸和ABA,具有更高的δ13C。这些都说明了乐都种群对干旱的适应性比汉源种群更强。两种群对干旱的响应差异应归于它们的用水策略的不同:汉源种群来自湿润地区,采用了耗水型的用水策略,抗旱能力较弱;而乐都种群,来自干旱地区,通常采用节水型的用水策略,有更强的抗旱能力。3.遮荫对青杨两种群抗旱性的影响:遮荫对青杨抗旱性的影响决定于遮荫程度的不同,我们的结果表明中度的遮荫可以有效的提高干旱下植物的生长,对干旱胁迫有明显的缓解作用,具体体现在中度遮荫下受旱植物的叶片相对含水量得到提高,使得植物体内水分状况得到了改善;光合速率并未降低,植物光合氮利用效率增加,说明中度的遮荫并未明显限制植物的碳获得;抗氧化酶活性与膜脂过氧化产物MDA含量的同时降低,说明中度遮荫下所受到的活性氧伤害减少;中度遮荫下的ABA及δ13C的变化也不如在全光下变化明显,这也说明中度遮荫缓解了干旱胁迫。但是重度的遮荫却对干旱胁迫有明显的加剧作用,主要表现在重度遮荫降低了植物的光合速率,严重抑制了植物的生长;同时重度遮荫下脯胺酸含量和抗氧化酶活性的急剧下降,导致了植物渗调能力的下降及膜脂过氧化产物MDA的显著升高;重度遮荫还显著降低了内源ABA的累积和δ13C,降低了植物的抗旱能力。此外,青杨两种群在对干旱和遮荫的响应中,也表现出种群差异。汉源种群,来自湿润且年日照辐射较少的地区,表现出相对更强的耐荫性和需水性。而乐都种群,来自干旱且年日照辐射丰富的地区,表现出相对更强的耐旱性和需光性。这说明了植物对环境胁迫的耐受性是其长期适应原生境的结果,并且来自不同气候地区的两种群在面临环境胁迫时会采取不同的生存策略。4. 外源ABA喷施对青杨两种群抗旱性的影响:外源ABA的喷施可以提高两种群的抗旱性,具体表现为外源ABA喷施促进了青杨根系的生长,显著提高了干旱下植物的根/冠比和细/粗根比,减少了比叶面积;在生理生化方面,外源ABA降低了干旱下植物叶片的气孔导度,降低了蒸腾速率和净光合速率,但提高了瞬时用水效率,提高了叶片的相对含水量,增加了干旱下植物的保水能力。外源ABA进一步增加了干旱下植物内源ABA的积累,促进了植物渗调物质如脯胺酸和可溶性糖的积累,增加了抗氧化酶系统(如SOD、APX、CAT)的活性和非酶系统AsA的含量,降低了活性氧(如超氧阴离子(O2和过氧化氢(H2O2))对植株的伤害。此外,外源ABA还进一步提高了干旱下植物的δ13C,提高了植物的长期用水效率,由此提高了植物的抗旱能力。另一方面,两种群对外源ABA和干旱的响应也有所差别。来自湿润地区的汉源种群,对干旱较为敏感,所受干旱的影响也较大,而外源ABA的喷施对汉源种群抗旱性的提高作用也更为突出。乐都种群,由于其长期适应干旱地区的生长,本身已具有较强的抗旱能力,因此外源ABA喷施对其抗旱性的提高不如对汉源种群的效果明显。由此我们可以得出对于一些抗性弱或干旱敏感的物种或者种群,可以采用外施ABA的方法来提高其抗性。Poplars play an important role in lumber supply, and are important component ofecosystems due to their wide distribution and well adaptation. Populus cathayana Rehd.,which belongs to Populus Sect. Tacamahaca Spach, is one of the most important resources ofpoplars for its fast growth and reproductive. In this study, different populations of P.cathayana were used as experiment material to investigate the adaptability to drought stressand population differences in adaptability, and the effects of shade and exogenous abscisicacid (ABA) application on the drought tolerance. Our results could provide a strongtheoretical evidence and scientific direction for the afforestation, and rehabilitation ofecosystem in the arid and semi-arid area, and provide a strong evidence for adaptivedifferentiation of different populations, and so may be used as criteria for species selectionand tree improvement. The results are as follows:1. A large set of parallel response to drought stress: Drought stress caused pronouncedinhibition of the growth and increased relatively dry matter allocation into the root. For thetwo populations, the shoot height, basal diameter and total biomass were decreased but theroot/shoot ratio and fine root/coarse root ratio were increased under drought conditions;Drought stress caused pronounced inhibition of photosynthesis, decreased the stomatalconductance, transpiration rate, and photosynthetic nitrogen-use efficiency (PNUE) butincreased the instantaneous water use efficiency. Drought significantly improved the levels ofreactive oxygen species and malondialdehyde (MDA) and to induce the entire set ofantioxidative systems including the increase of activities of superoxide dismutase (SOD),ascorbate peroxidase (APX), catalase (CAT) and ascorbate (AsA) content. Drought decreased the leaf relative water content (RWC) but improved the capability of osmotic adjustmentindicated by the higher proline accumulation. Drought also increased the ABA content andcarbon isotope composition (δ13C), which indicating the long period water use efficiency wasimproved under drought. These results demonstrate that there are a large set of parallelchanges in the morphological, physiological and biochemical responses when plants areexposed to drought stress; these changes may enhance the capability of plants to survive andgrow during drought periods.2. Difference in adaptation to drought stress between contrasting populations of P.cathayana: Compared with the Hanyuan population (wet climate), the Ledu population (dryclimate) showed higher root/shoot ratio and water use efficiency, exhibited higherantioxidative systems capability thus resulting in less oxidative damage, accumulated moreABA and free proline content under drought conditions. The results suggested that there weredifferent water-use strategies between the two populations. The Ledu population, whichcomes from dry climate region, with higher drought tolerance, may employ a conservativewater-use strategy, whereas the Hanyuan population, which comes from wet climate, withlower drought tolerance, may employ a prodigal water-use strategy. These variations indrought responses may be used as criteria for species selection and tree improvement.3. The effects of shade on the drought tolerance: The reduction in the availability of lightand water affected the morphological and physiological responses of the two P. cathayanapopulations. In addition, the light environment modified the growth responses of P.cathayana seedlings to varying water environments in different ways depending upon theintensity of the light levels considered. There is an apparent alleviation to drought effects bymoderate shade in P. cathayana seedlings, as indicated by the higher leaf RWC, and unchanged net photosynthesis and PNUE, as well as by the lower antioxditative enzymeactivity, MDA, ABA and δ13C levels, which implied moderate shade did not significantlylimited the carbon acquisition or inhibited the plant growth, but ameliorated the detrimentaleffects of drought. On the other hand, an apparent aggravation to drought effects by severeshade was also observed, as indicated by the pronounced decrease of plant growth and net photosynthesis, the lower total biomass, ABA level, δ13C, free proline content andantioxditative enzyme activity and higher MDA accumulation. By contrast, the twopopulations showed different responses to shade and drought. The Hanyuan population,which comes from a riparian basin having a relatively wet climate and less annual solarradiation, is more sensitive to drought but more tolerant to shade. The Ledu population, whichcomes from a mountainous plateau with less rainfall and with more annual solar radiation, ismore tolerant to drought but more sensitive to shade. The results demonstrated that theendurance of plants to stress is a result of long-term evolution and adaptation to theenvironment, as suggested by the different strategies employed by the P. cathayanapopulations originating from contrasting habitats when they were exposed to drought andshade.4. The effects of exogenous ABA application on the drought tolerance: For bothpopulations under drought conditions tested, exogenous ABA application significantlyimproved the root/shoot ratio, fine root/coarse root ratio, and decreased the specifical leaf area.On the physiological and biochemical traits, exogenous ABA application significantlydecreased stomatal conductance, transpiration rate and net photosythesis but increased theinstance water use efficiency and leaf RWC. On the other hand, exogenous ABA applicationsignificantly increased endogenous ABA, proline, solube sugar and AsA content, as well asSOD, APX and CAT activities, thus reduced the damage of reactive oxygen species. Moreover,the long period water use efficiency as indicated by δ13C was also improved by exogenousABA application. In additionally, there was different responsive between the two populationsto drought and exogenous ABA application. The Hanyuan population, which comes from wetclimate region, is more sensitive to drought, and the effect of exogenous ABA is moreobviously than that in the Ledu population, which comes from dry climate region and is moredrought-responsive. Therefore, we can use exogenous ABA application to improve theresistance of plants, especially for the drought- sensitive species or populations.
Resumo:
随着全球气候变暖和温室效应加剧,干旱和荒漠化成为威胁人类生存和发展的主要 灾害,许多被子植物对干旱胁迫的生理、生态和生化响应已逐步得以报道,但很少有开 展干旱胁迫对雌雄异株植物的影响方面的研究。由于这类植物在长期进化过程中已经在 生长、性比、生殖格局、空间分布、资源配置和生物量分配等方面形成了明显的性别差 异,因此,干旱胁迫必将对其雌雄植株产生不同的生理生态影响。本研究以青杨为模式 植物,采用植物生态、生理及生物化学等研究方法,系统研究青杨雌雄植株在常温、增 温以及喷施外源脱落酸的条件下对干旱胁迫的响应,揭示其在生长形态、生物量分配、 光合作用、用水效率和生理生化等方面的性别间差异。主要研究结果如下: 1. 青杨雌雄植株对干旱胁迫的综合响应。 与较好水分条件相比,干旱胁迫显著降低了青杨雌雄植株的光合作用和生长发育, 影响了许多生理生化过程,并导致雌雄植株在生长发育、气体交换、用水效率、膜脂抗 氧化和抗氧化系统酶活性方面表现出显著的性别间差异。在较好水分条件下,雌雄植株 之间在株高、基径、生物量、净光合速率、蒸腾速率、用水效率以及丙二醛、脱落酸和 游离脯氨酸等生化物质含量方面均无显著差异。但在干旱胁迫下,雄株在生长发育、气 体交换、水分利用效率、膜脂过氧化保护和抗氧化系统酶活性方面均显著高于雌株,表 现出比雌株更高的株高、基径、叶面积、总叶片数、总生物量、总色素含量、类胡萝卜 素含量、净光合速率、蒸腾速率、羧化效率、光系统II最大光化学效率、内在水分利用 效率、碳同位素组分、过氧化氢酶和过氧化物酶活性等,而在CO2补偿点、比叶面积、 叶绿素a/b、丙二醛、脱落酸和超氧化物歧化酶活性等指标上显著低于雌株。与雌株相比, 雄株表现出更高的干旱胁迫适应能力,而雌株的生长发育和生理生化过程更易遭受干旱 胁迫的影响。 2. 干旱胁迫下的青杨雌雄植株对增温处理的综合响应 与环境温度相比,增温在干旱胁迫前后均显著促进了雌雄植株的生长发育、气体交 换,降低水分利用效率,影响生化物质含量,并促使青杨雌雄植株之间在干旱胁迫下表 现出显著的差异。在较好水分条件下,增温导致雌株的株高、基径、叶面积、总叶片数、 总生物量和超氧化物歧化酶活性显著高于雄株,而用水效率、丙二醛、脱落酸和游离脯 氨酸、抗坏血酸过氧化物酶和过氧化物酶活性低于雄株。在干旱胁迫下,增温将导致雄 株的株高、基径、叶面积、总生物量、净光合速率、蒸腾速率、气孔导度、总色素含量、 相对含水量、过氧化氢酶和抗坏血酸过氧化物酶活性等显著高于雌株,而光系统II 最大 光化学效率、内在水分利用效率、碳同位素组分、丙二醛、脱落酸、游离脯氨酸和超氧 化物歧化酶活性显著低于雌株。与雄株相比,水分较好条件下的增温有利于促进雌株的 生长发育,并在生理生态特征上优于雄株。而干旱胁迫下的增温则加剧了水分胁迫强度, 致使雌株的生长发育遭受比雄株更多的负面影响。 3. 干旱胁迫下的青杨雌雄植株对喷施外源脱落酸处理的综合响应 与对照相比,在干旱胁迫下喷施外源脱落酸可显著增加青杨雌雄植株的生长发育、 气体交换、降低水分利用效率,影响了生化物质含量,并导致青杨雌雄植株之间在干旱 胁迫下表现出显著的生理生态差异。在干旱胁迫下,喷施外源脱落酸致使雌株的株高、 叶面积、叶干重、细根干重、总生物量、净光合速率、蒸腾速率、气孔导度、光系统II 最大光化学效率、非光化学淬灭系数、相对含水量、总光合色素、类胡萝卜素、脱落酸、 超氧化物歧化酶和过氧化物酶活性的增加量显著高于雄株,而根重比、根冠比、细根/ 总根、比叶面积、内在水分利用效率、碳同位素组分、丙二醛、脯氨酸、过氧化氢酶和 抗坏血酸过氧化物酶活性等指标的减少量上显著低于雄株。与对照相比,干旱胁迫下的 喷施外源脱落酸则一定程度能减缓植株遭受胁迫的压力,促进植株生长和气体交换,减 少了植株体内的过剩自由基数量,并促使雌株的生长发育和光合能力显著提高,增强其 抗干旱胁迫能力。 With development of global warming and greenhouse effect, drought and desertification have been became main natural disasteres in resent years. Studies on ecophysiological responses of most angiosperm species to environmental stress have been reported, but little is known about dioecious plant responses to drought stress. Since significant differences on growth, survival, reproductive patterns, spatial distribution, as well as resource allocation between males and females of dioecious plant have been formed during evolutionary process, sexual different ecophysiological responses should be caused by drought stress. In this experiment, Populus cathayana Rehd. was used as model plant to study the sex-related responses to drought by using the ecological, physiological and biochemical methods under normal atmospheric temperature, elevated temperatures and exogenous abscisic acid (ABA) application treatment respectively, and to expose the sexual differences in growth, biomass allocation, photosynthesis, water use efficiency and some biochemical material contents in the males and females of dioecious plant. The results are follows: 1. A large set of parallel responses of males and females of P. cathayana to drought stress Compared with well-watered treatment, drought significantly decreased growth and photosynthesis of P. cathayana individuals, affected some physiological and biochemical processes, and induced males and females to exhibit obvious sexual differences in growth, gas exchange, water use efficiency, lipid peroxidation protection and antioxidant defenses enzyme system. Under well-watered treatment, there were no significant sexual differences in height growth (HG), basal diameter (BD), dry matter accumulation (DMA), net photosynthesis rate (A), transpiration (E), water use efficiency (WUE), and malondialdehyde (MDA), abscisic acid (ABA) and praline (Pro). However, under drought stress, males were found to exhibit higher HG, BD, leaf area (LA), total leaf number (TLA), DMA, total chlorophyll contents (TC), carotenoids content (Caro), A, E, carboxylation efficiency (CE), the maximum efficiency of PSII (Fv/Fm), intrinsic water use efficiency (WUE ), carbon isotope composition (δ13C), catalase (CAT), peroxidase (POD) and lower CO2 compensation point (Γ), specific leaf area (SLA), chlorophyll a/b ratio (Chla/Chlb), MDA, ABA and superoxide dismutase (SOD) than females. The results suggest that males possess greater drought resistance than do females and females suffer more negative effect on growth and development, physiological and biochemical processes than males under drought stress. 2. A large set of parallel responses of drought-stressed males and females of P. cathayana to elevated temperatures Compared with environmental temperature, elevated temperature treatment significant increased growth and gas exchange, decreased water use efficiency, changed some biochemical material contents of P. cathayana individuals, and induced males and females to exhibit obvious differences under drought stress. Under good water condition, elevated temperature treatment caused females to show significant higher HG, BD, LA, TLN, DMA, SOD activity, and great lower WUE, MDA, ABA, Pro, ascorbate peroxidase (APX) and POD than do males. On contrary, under drought condition, elevated temperature treatment induced males to exhibit higher HG, BD, LA, DMA, A, E, stomatal conductance (gs), relative water content (RWC), CAT, APX activity but lower Fv/Fm, WUE, δ13C, MDA, ABA, Pro, SOD activity than do females. The results suggest that females will benefit from elevating temperature under good water condition by possessing better ecophysiological processes than that of males, but will suffer from greater negative effects than do males when grown under drought stress with elevated temperature treatment. 3. A large set of parallel responses of drought-stressed males and females of P. cathayana to exogenous ABA application Compared with controls, exogenous ABA application under drought greatly increased growth and gas exchange, decreased water use efficiency, changed some biochemical material contents in P. cathayana individuals, and induced males and females to exhibit obvious sexual differences under drought. Under drought stress, exogenous ABA application induced females to exhibit more increases in HG, LA, leaf weight (LW), fine root weight (FRW), DMA, A, E, g, Fv/Fm, non-photochemical quenching coefficient (qN), RWC, TC, Caro, ABA, SOD, POD s activity than males, but to show lower decreases in root/weight ratio (RWR), root mass/foliage area ratio (RF), fine root/total root ratio (FT), SLA, WUE, δ13C, MDA, Pro, CAT, APX than males. The results suggest that exogenous ABA application under drought stress will eliminate negative damages caused by drought stress at a certain extent,promote the growth and gas exchange of plant and decrease the number of superfluous 1O2 in plant cells of males and females of P. cathayana. Furthermore, exogenous ABA application promoted more drought resistance in females than in males by increasing more growth and photosynthetic capacity in females under drought stress.
Resumo:
臭氧层损耗导致的地球表面UV-B辐射增强以及温室气体增多引起的气候变暖是当今两大全球环境问题。UV-B辐射增强和气候变暖对陆地植物和生态系统产生深远影响,并已成为全球变化研究的重要议题。作为世界第三极的青藏高原,UV-B 辐射增强以及气候变暖现象尤为突出。本试验所在林区是青藏高原东缘的主要林区,具有大面积的亚高山人工针叶成熟林,在全球变化背景下该森林的天然更新潜力如何是急待回答的重要问题。基于此,本研究围绕森林树种的种子和幼苗这一更新的重要阶段,开展了气候变暖、UV-B辐射增强和联合胁迫对云杉种子萌发及幼苗定居影响的研究,旨在全球变化背景下,探讨全球变暖、UV-B 辐射增强和联合胁迫是否对西南地区大面积人工亚高山针叶林更新的种子萌发和幼苗定居阶段产生影响。 本文以青藏高原东缘亚高山针叶林主要树种云杉为研究对象,研究云杉种子萌发及幼苗的生长和生理对UV-B辐射增强与气候变暖的响应。采用UV-B荧光灯(UV-lamp)来模拟增强的UV-B 辐射,此外,采用开顶式有机玻璃罩(OTCs)来模拟气候变暖。本试验包括四个处理:(1)大气UV-B 辐射+大气温度(C);(2)大气UV-B 辐射+模拟气候变暖(W);(3)增强的UV-B辐射+大气温度(U);(4)增强的UV-B辐射+模拟气候变暖(U+W)。 根据本试验结果,UV-B辐射增强对云杉种子萌发没有显著影响,它对萌发云杉幼苗的影响主要体现在幼叶展开以后。根据两年的试验结果,增强的UV-B辐射降低了云杉幼苗抗氧化酶活性,降低了抗氧化物质的含量,此外,造成了膜质的过氧化,表现为MDA在针叶中的积累。增强的UV-B照射处理萌发云杉幼苗两年后,幼苗的生长受到显著抑制。我们的结果显示,OTCs分别提高了空气(10 cm)和土壤(5 cm)温度1.74℃和0.94 ℃。增温显著地促进了云杉种子提前萌发,提高了萌发速率和萌发比率,而且,明显地促进了幼苗的生长,表现为株高和生物量累积的显著增长。此外增温还有利于云杉幼苗根的伸长生长以及生物量的累积,这可以使云杉幼苗更好地利用土壤中的水分和营养元素。 根据本试验结果,温度升高显著地促进了增强UV-B辐射下云杉萌发幼苗的生长,这说明,温度升高缓解了UV-B辐射增强对云杉萌发幼苗的负面影响。这种缓解作用可能是温度升高对UV-B辐射增强处理下幼苗的抗氧化系统活性改善的结果。温度升高还缓解了高UV-B辐射对云杉幼苗根生长的抑制作用,这也可能是增温缓解伤害的原因之一。此外,根据我们的试验结果,增温与UV-B辐射增强联合作用(U+W)下云杉萌发幼苗的生长状况好于大气温度与大气UV-B辐射联合(C)处理,表现为株高、地径、根长和生物量积累均高于C处理,因此可以推断,UV-B辐射增强与气候变暖同时存在对萌发幼苗在两年之内的生长没有产生抑制作用,也就是说,气候变暖的缓解作用完全弥补了UV-B辐射增强的有害作用。 同样,增强的UV-B辐射显著影响了云杉幼苗的光合作用,表现为净光合速率(Pn)和表观量子效率(Φ)的提高,此外,根据我们的试验结果,它还造成了PSII的光抑制。增强的UV-B辐射显著抑制了云杉幼苗对营养元素的吸收,表现为大量营养元素、碳、钙、镁和锌含量的降低,但是,它却显著促进了铁在植株体内的积累。增温显著地提高了净光合速率,但是,它对光系统II(PSII)的光化学效率影响不大。温度升高缓解了UV-B增强对云杉幼苗光合作用的伤害,表现为净光合速率、表观量子效率以及PSII光化学效率的提高。此外,温度升高还缓解了UV-B辐射增强对离子吸收的抑制作用。 Enhanced UV-B radiation due to the reduction of O3 layer and global warming induced by increased greenhouse gases in the air have become the two pressing aspects of global climate changes. Moreover, enhanced UV-B radiation and warming have profound and long-term impacts on terrestrial plants and ecosystems, and the studies focusing on the two factors have attracted many attentions. Qinghai-Tibetan Plateau is the third in elevation in the world, and enhanced UV-B radiation and climate warming are especially prominent in this region. Our research located in the main forest belt in the eastern Qinghai-Tibetan Plateau where large areas of subalpine coniferous forests distributed. Based on that, we carried out a research to study the effects of enhanced UV-B radiation and climate warming on seed germination and seedlings growth of seedlings which are the important basic stage in forest regeneration. This research was arranged by a complete factorial design and included two factors (UV-B radiation and temperature) with two levels. The UV-lamps were used to manipulate the supplemental UV-B radiation and open-top chambers (OTCs) were adopted to increase temperature. The four treatments were: (1) C, ambient UV-B without warming; (2) U, enhanced UV-B without warming; (3) W, ambient UV-B with OTCs warming; (4) U+W, enhanced UV-B with OTCs warming. The main results were exhibited as follows: 1. Based on our results in this research, OTCs increased temperature on average 1.74℃ in air (10 cm above ground) and 0.92 ℃ in soil (5 cm beneath ground). Furthermore, OTCs also slightly reduced soil moisture and relative air humidity, however, the differences was not statistically significant. 2. Our results showed that enhanced UV-B had no significant effects on the seeds germination of P. asperata. Enhanced UV-B affected sprouts of P. asperata until the needles unfolded. During two years, enhanced UV-B inhibited the efficiency of the antioxidant defense systems, and as a result, it induced oxidant stress and the accumulation of MDA in needles. After two years of exposure to enhanced UV-B, the growth of P. asperata sprouts was markedly restrained compared with those under ambient UV-B radiation and temperature (C). Warming significantly stimulated the germination speed and increased the germination rate of P. asperata seeds. In the next place, it prominently facilitated the growth of P. asperata sprouts, represented as improvements in stem elongation and biomass accumulation. Furthermore, warming also increased root growth of P. asperata sprouts, which could made sprouts more efficient to use water and nutrient elements in soil. In this research, warming alleviated the deleterious effects of enhanced UV-B on P. asperata sprouts. It markedly stimulated the growth of P. asperata sprouts exposed to enhanced UV-B. The ease effects of warming on the abilities of the antioxidant defense systems might account for its amending effects on growth. After two years of exposure to enhanced UV-B radiation and warming, the growth of P. asperata sprouts was better than those under ambient UV-B radiation without warming (C), which could be seen from the higher plant height, basal diameter, root length and total biomass accumulation compared with C. 3. Enhanced UV-B radiation significantly influenced the photosynthesis processes of two-year old P. asperata seedlings. Our results showed that enhanced UV-B reduced the net photosynthetic rate (Pn) and the apparent quantum efficiency (Φ), and induced photoinhibition of photosynthetic system II (PSII). Enhanced UV-B significantly decreased the concentration of nitrogen (N), phosphorous (P), potassium (K), calcium (Ca), magnesium (Mg) and zinc (Zn), however, it increased the accumulation of iron (Fe) in the whole plant of P. asperata seedlings. Warming significantly stimulated Pn of P. asperata seedlings but it had no prominent impacts on the photochemical efficiency of PSII. In our research, warming also alleviated the harmful effects of enhanced UV-B on photosynthesis and absorption of ions of P. asperata seedlings. It increased Pn, Φ and the photochemical efficiency of PSII in seedlings exposed to enhanced UV-B. Moreover, warming also increased the absorption of ions of the seedlings exposed to enhanced UV-B radiation.
Resumo:
干旱环境常常由于多变的降水事件和贫瘠土壤的综合作用,表现出较低的生产力和较低的植被覆盖度。全球性的气候变暖和人类干扰必将使得干旱地区缺水现状越来越严竣。贫瘠土壤环境中已经很低的有效养分含量也将会随着干旱的扩大而越来越低。干旱与半干旱系统中不断加剧的水分与养分的缺失将严重限制植物的生长和植被的更新,必然会使得已经恶化的环境恶化速率的加快、恶化范围的加大。如何抑制这种趋势,逐步改善已经恶化的环境是现在和将来干旱系统管理者面临的主要关键问题。了解干旱系统本土植物对未来气候变化的适应机制,不仅是植物生态学研究的重要内容,也对人为调节干旱环境,改善干旱系统植被条件,提高植被覆盖度具有重要的实践意义。 本研究以干旱河谷优势灌木白刺花(Sophora davidii)为研究对象,通过两年大棚水分和施N控制实验和一个生长季野外施N半控制实验,从植物生长-生理-资源利用以及植物生长土壤环境特征入手,系统的研究了白刺花幼苗生长特性对干旱胁迫和施N的响应与适应机制,并试图探讨施N是否可调节干旱系统土壤环境,人工促进干旱条件下幼苗定居,最终贡献于促进植被更新实践。初步研究结论如下: 1)白刺花幼苗生长、生物量积累与分配以及水分利用效率对干旱胁迫和施N处理的适应白刺花幼苗株高、基径、叶片数目、叶面积、根长、生物量生产、相对含水量和水分利用效率随着干旱胁迫程度的增加而明显降低,但地下部分生物量比例和R/S随着干旱胁迫程度的增加而增加。轻度施N处理下幼苗株高、基径、叶片数目、叶片面积和生物量生产有所增加。但重度施N处理下这些生长指标表现出微弱甚至降低的趋势。严重干旱胁迫条件下,幼苗叶面积率、R/S、相对含水量和水分利用效率也以轻度施N处理为最高。 2)白刺花幼苗叶片光合生理特征对干旱胁迫和施N处理的适应叶片光合色素含量和叶片光合效率随着干旱胁迫程度的增加而显著降低,并且PS2系统在干旱胁迫条件下表现出一定程度的光损害。但是比叶面积随着干旱胁迫程度的增加而增加。在相对较好水分条件下幼苗净光合速率的降低可能是因为气孔限制作用,而严重干旱胁迫条件下非气孔限制可能是导致幼苗叶片光合速率下降的主要原因。叶片叶绿素含量、潜在光合能力、羧化效率、光合效率以及RUBP再生能力等在施N处理下得到提高,并因而改善干旱胁迫条件下光合能力和效率。虽然各荧光参数对施N处理并无显著的反应,但是干旱胁迫条件下qN和Fv/Fm在轻度施N处理下维持相对较高的水平,而两年连续处理后在严重干旱胁迫条件下幼苗叶片光合效率受到重度施N处理的抑制,并且Fv/Fm和qN也在重度施N处理下降低。 3)白刺花幼苗C、N和P积累以及N、P利用效率对干旱胁迫和施N处理的适应白刺花幼苗C、N和P的积累,P利用效率以及N和P吸收效率随干旱胁迫程度的增加而显著降低,C、N和P的分配格局也随之改变。在相同水分处理下,C、N和P的积累量、P利用效率以及N和P吸收效率在轻度施N处理下表现为较高的水平。然而,C、N和P的积累量和P利用效率在重度施N处理下不仅没有表现出显著的正效应,而且有降低的趋势。另外,在相同水分条件下白刺花幼苗N利用效率随着施N强度的增加而降低。 4)白刺花幼苗生长土壤化学与微生物特性对干旱胁迫和施N的适应白刺花幼苗生长土壤有机C、有效N和P含量也随干旱胁迫程度的增加而明显降低。干旱胁迫条件下土壤C/N、C/P、转化酶、脲酶和碱性磷酸酶活性的降低可能表明较低的N和P矿化速率。尽管微生物生物量C、N和P对一个生长季干旱胁迫处理无显著反应,但微生物生物量C和N在两年连续干旱胁迫后显著降低。土壤有机C和有效P含量在轻度施N处理下大于重度施N处理,但是有效N含量随着施N强度的增加而增加。微生物生物量C和N、碱性磷酸酶和转化酶活性也在轻度施N处理下有所增加。但是碱性磷酸酶活性在重度施N处理下降低。 5)野外条件下白刺花幼苗生长特征及生长土壤生化特性对施N的适应植物生长、生物生产量、C的固定、N、P等资源的吸收和积累、其它受限资源的利用效率(如P)在轻度施N处理下均有所增加,但N利用效率有所降低。幼苗生物生产量及C、N和P等资源的分配格局在轻度施N处理下也没有明显的改变。白刺花幼苗叶片数目、生物生产量和C、N、P的积累量在重度施N处理下虽然也相对于对照有所增加,但幼苗根系长度显著降低。生物量及资源(生物量、C、N、P)在重度施N处理下较多地分配给地上部分(主要是叶片)。另外,土壤有机C、全N和有效N含量随外源施N的增加而显著增加,土壤pH随之降低,但土壤全P含量并无显著反应。其中有机C含量和有效P含量以轻度施N处理最高。微生物生物量C、N和P在轻度施N处理下也显著增加,而微生物生物量C在重度施N处理下显著降低。同时,转化酶、脲酶、碱性磷酸酶和中性磷酸酶活性在施N处理下也明显的提高,但酸性磷酸酶和过氧化氢酶活性显著降低,其中碱性磷酸酶和中性磷酸酶活性以轻度施N处理最高。 综合分析表明,干旱河谷水分和N严重限制了白刺花幼苗的生长。施N不能完全改变干旱胁迫对白刺花幼苗的抑制的作用,但是由于施N增加土壤N有效性,改善土壤一系列生物与化学过程,幼苗的生长特性也对施N表现出强烈的反应,表现为植物结构与资源分配格局的改善,植物叶片光合能力与效率的提高,植物生长以及利用其他受限资源(如水分和P)的效率的增加,致使植物自身生长及其生长环境在干旱环境下得到改善。但是过度施N不仅不能起到改善干旱胁迫下植物生长环境、促进植物生长的作用,反而在土壤过程以及植物生长过程中加重干旱胁迫对植物的伤害。因此,建议在采用白刺花作为先锋种改善干旱河谷系统环境的实践中,可适当施加N以改善土壤环境,调节植物利用与分配资源的效率,促进植物定居,得到人工促进种群更新的目的。但在实践过程中也要避免过度施N。 Arid regions of the world are generally noted for their low primary productivity which is due to a combination of low, unpredictable water supply and low soil nutrient concentrations. The most serious effects of global climate change and human disturbances may well be those which related to increasing drought since drought stress has already been the principal constraint in plant growth. The decline in total rainfall and/or soil water availability expected for the next decades may turn out to be even more drastic under future warmer conditions. Nevertheless, water deficit is not the only limiting factor in arid and semiarid environments. Soils often suffer from nutrient (especially N and P) deficiencies in these ecosystems, which can also be worsened by climate change. How to improve the poor soil quality and enhance the vegetation coverage is always the problem facing ecosystem managers. The adaptive mechanisms of native plant to future climate change is always the focus in plant ecology, it also plays important roles in improving vegetation coverage by manual controlled programmes. Sophora davidii is a native perennial shrub of arid valleys, which is often predominant on eroded slopes and plays a vital role in retaining ecological stability in this region. It has been found that S. davidii was better adapted to dry environment than other shrubs, prompting its use for re-vegetation of arid lands. A two-years greenhouse experiment and a field experiment were conducted in order to understand the adaptation responses of Sophora davidii seedlings to different water and N conditions, and further explore if additional N supply as a modified role could enhance the adaptation ability of S. davidii seedlings to dry and infertile environment. Two-month old seedlings were subjected to a completely randome design with three water (80%, 40% and 20% water field capacity (FC)) and three N supply (N0: 0, Nl: 92 and Nh: 184 mg N kg-1 soil) regimes. Field experiment was arranged only by three N supplies in the dry valley. 1) The growth, biomass partitioning and water-use efficiency of Sophora davidii seedlings in respond to drought stress and N supply Seedlings height, basal diameter, leaf number, leaf area, root length, biomass production, relative water content (RWC) and WUE were decreased with increase of drought stress. An increase in below-ground biomass was observed indicating a higher root/shoot ratio (R/S) under drought stress conditions. Low N supply increased seedlings height, basal diameter, leaf number, leaf area, and biomass production, but decreased root length. In contrast, these growth characteristics showed little or negative effect to high N supply treatment. Leaf percentages increased with increase of N supply, but fine root percentages decreased. In addition, Low N supply rather than the other two N treatments increased leaf area ratio (LAR), leaf/fine root mass ratio (L/FR), R/S and RWC under severe drought stress (20%FC), even though these parameters could increase with the high N supply treatment under well-watered condition (80%FC). Moreover, Low N supply also increased WUE under three water conditions, but high N supply had little effect on WUE under drought stress conditions (40%FC and 20%FC). 2) Leaf gas exchange and fluorescence parameters of Sophora davidii seedlings in respond to drought stress and N supply Leaf area (LA), photosynthetic pigment contents, and photosynthetic efficiency were decreased with increase of drought stress, but specific leaf area (SLA) increased. Photodamage in photosystem 2 (PS2) was also observed under drought stress condition. The decreased net photosynthetic rate (PN) under relative well-watered water conditions might result from stomatal limitations, but the decreased PN under other hand, photosynthetic capacity by increasing LA, photosynthetic chlorophyll contents, Pnmax, CE, Jmax were increased with increase N supply, and photosynthetic efficiency was improved with N supply treatment under water deficit. Although N supply did a little in alleviating photodamages to PS2 caused by drought stress, low N supply enhanced qN and kept relative high Fv/Fm under drought stress condition. However, high N supply inhibited leaf photosynthetic efficiency, and declined Fv/Fm and qN under severe drought stress condition after two year continues drought stress and N supply. 3) Carbon accumulation, nitrogen and phosphorus use efficiency of Sophora davidii seedlings in respond to drought stress and N supply C, N and P accumulation, NUE , N and P uptake efficiency (NUtE and NUtE ) P N P were decreased with increase of drought stress regardless of N supply. On the other hand, the S. davidii seedlings exhibited strong responses to N supply, but the responses were inconsistent with the various N supply levels. Low N supply rather than the other two N treatments increased C, N and P accumulation, improved NUEP, NUtE and NUtE under corresponding water condition. In contrast, high N supply N P did few even depressed effects on C, N and P accumulation, and NUEP, although NUtEN and NUtEP could increase with high N supply under corresponding water conditions. Even so, a decrease of NUEN was observed with increase of N supply under corresponding water conditions. 4) Soil microbial and chemical characters in respond to drought stress and N supply The content of soil organic C, available N and P were decreased with increase of drought stress. Decreases in C/N and C/P, and invertase, urea and alkaline phosphatase activity were also observed under drought stress conditions, indicating a lower N and P mineralization rate. Although microbial biomass C, N and P showed slight responses to drought stress after one growth period treatment, microbial biomass C and N were also decreased with increase of drought stress after two year continuous treatment. The content of soil organic C and available P showed the stronger positive responses to low N supply than which to high N supply, although than the other two N treatments increased microbial biomass N and invertase activity under severe drought stress condition, even though invertase activity could increase with high N supply treatment under relative well-water conditions. Moreover, low N supply treatment also increased C/P and alkaline phosphatase activity which might result from higher P mineralization, but high N supply did negative effects on alkaline phosphatase activity. 5) The growth characteristics of Sophora davidii seedlings and soil microbial and chemical characters in respond to N supply under field condition Low N supply facilitated seedlings growth by increasing leaf number, basal diameter, root length, biomass production, C, N and P accumulation and absorption, and enhancing the use efficiency of other limited resources as P. Compared to control, however, low N supply did little effect on altering biomass, C, N and P portioning in seedlings components. On the contrary, high N supply treatment also increased leaf number, biomass and C, N and P accumulation relative to control, but significantly decreased root length, and altered more biomass and resources to above-ground, which strongly reduced the ability of absorbing water under drought condition, and thus which might deep the drought stress. In addition, N supply increased soil C, N and available N content, but declined pH and showed little effects on P content. Low N supply showed higher values of soil C and available P content. Low N supply also increased microbial biomass C, N and P, although high N supply decreased microbial biomass C. N supply significantly enhanced soil invertase, urea, alkaline and neutral phosphratase activity, while declined acid phosphratase and catalase activity. Low N supply exhibited higher alkaline and neutral phosphratase activity compared to the others. The results from this study indicated that both drought and N limited the growth of S. davidii seedlings and their biomass production. Regardless of N supply levels, drought stress dramatically reduced the seedlings growth and biomass production. Although plant growth parameters, including basal diameter, height, leaf number, and biomass and their components were observed to be positive responses to low N supply, N supply alone can not alter the diminishing tendency which is caused by drought. available N content increased with increase N supply. In addition, low N supply rather These findings imply that drought played a primary limitation role and N was only the secondary. Even so, appropriate N supply was seemed to enhance the ability that S. davidii seedlings adapted to the xeric and infertile environment by improving soil processes, stimulating plant growth, increasing recourses accumulation, enhancing use efficiency of other limited resources, and balancing biomass and resources partitioning. Appropriate N supply, therefore, would be recommended to improve S. davidii seedling establishment in this region, but excess N supply should be avoided.
Resumo:
土壤是人类赖以生存的自然环境和农业生产的重要资源,目前土壤受到干旱和盐胁迫的危害越来越严重。杨树具有适应性强、生长快和丰产等特性,本论文以青杨组杨树为模式植物,研究杨树对土壤干旱和盐胁迫的生态生理及蛋白质组学反应,研究成果可为我国干旱半干旱地区营造人工林、防止沙漠化提供理论依据,也为恢复与重建盐污染地区退化生态系统提供科学指导。主要研究结果如下: 1 青杨不同种对逐步干旱胁迫的响应差异 将来自喜马拉雅山东缘高海拔的康定杨和低海拔的青杨枝条扦插在温室中,用来检测它们对逐步干旱胁迫的响应。研究结果表明来自不同海拔的杨树对逐步干旱胁迫的适应性反应是不一样的。株高、叶片发育、叶片相对含水量、丙二醛、过氧化氢等指标的显著性变化在青杨中比在康定杨中来得早些,而且随着干旱胁迫程度的增加,这些参数的变化越来越明显,尤其是当青杨受到严重干旱胁迫的时候;而可溶性蛋白、可溶性糖、游离脯氨酸、抗氧化酶活力变化在康定杨中来得早一些。与青杨相比,在干旱胁迫下,康定杨仍能保持较好的植株生长和叶片发育;康定杨也能在逐步干旱条件下积累更多的可溶性蛋白、可溶性糖、游离脯氨酸及抗氧化酶活力,但是在丙二醛和过氧化氢含量方面增加的更少些。而且,我们的研究结果表明高海拔的康定杨有更强的耐干旱能力,杨树对干旱胁迫的适应能力与干旱发生的速度、强度、持续时间及两种杨树的海拔有关。 2 干旱胁迫下青杨不同种的蛋白质组学分析 来自青杨和康定杨雌株的枝条扦插在温室中,用来研究它们对干旱胁迫的蛋白质组学反应。采用TCA-丙酮/酚提取法提取总蛋白,并进行双向电泳分析。在每个处理的重复图像中都能检测到1,000 个以上的蛋白点。在青杨中有58 个蛋白在干旱处理后发生显著变化,其中22 个蛋白通过肽指纹图谱成功鉴定。康定杨中有69 个蛋白的表达量发生了显著变化,其中有25 个蛋白通过肽指纹图谱成功鉴定。这些被鉴定的蛋白主要参与了光合作用、氧化还原平衡、信号传导、能量代谢、蛋白质合成等过程。尽管被鉴定的蛋白只占叶片总蛋白的很少一部分,但这些被鉴定的干旱响应蛋白可能对维持植株内部平衡方面有重要作用。 3 青杨的盐胁迫响应 青杨植株分别用 0、50 和100 mM NaCl 溶液进行处理。叶片相对含水量、叶绿素a、b 含量、CO2 同化速率和气孔导度的降低表明叶绿体受到了盐胁迫的影响。过氧化氢、丙二醛含量及电导率的升高表明细胞受到了伤害。可溶性糖、游离脯氨酸含量及抗氧化酶含量的上升增加了植株耐盐胁迫的能力。在每个处理的重复图像中都能检测到1,000 个以上的蛋白点。其中有38 个盐响应蛋白被成功鉴定,有16 个蛋白(点4、10、11、14、15、21、24、26、27、28、33、34、35、36、37 和38)出现在盐胁迫的植株中;3 个蛋白(点10、11 和35)只出现在重度盐胁迫处理中;而1 个蛋白(点1)只出现在对照处理中。2 个蛋白(点1 和2)表达量下降,其余蛋白点表达量都增加。被鉴定的蛋白一部分参与了生理生化反应,而另一部分则在信号传导、蛋白质合成等方面有重要作用。盐胁迫下的生理生化变化及蛋白质组学的联合研究有利于青杨对盐胁迫的适应性分析。 Soil is the indispensable environment for human survival and important resource for agriculture development. Nowadays soil is threatened by drought stress and salt stress. Poplars (Populus spp.) possess some characters such as strong acclimilation, fast growth and great production of biomass. In this study, different species of Populus section Tacamahaca spach were used as model plants to investigate the ecophysiological and proteomic responses to drought stress and salt stress. Our results can provide theoretical evidence for the afforestation and prevention of desertification in the arid and semi-arid areas, and also can supply scientific direction for the reconstruction and rehalibitation of ecosystems contaminated by salinity. The results are as follows: 1 Adaptive responses to progressive drought stress in two contrasting poplar species originating from different altitudes Cuttings of Populus kangdingensis C. Wang et Tung and Populus cathayana Rehd., originating from high and low altitudes in the eastern Himalaya, respectively, were examined during one growing season in a greenhouse to determine the effects of progressive drought stress. The results manifested that the adaptive responses to progressive drought stress were different in these two species from different altitudes. Significant changes in height increment, leaf development, relative water content (RWC), malondialdehyde (MDA) and hydrogen peroxide (H2O2) appeared earlier in P. cathayana than in P. kangdingensis, whereas changes in soluble protein, soluble sugar, free proline and antioxidant enzymes appeared earlier in P. kangdingensis. In addition, changes in these parameters became more and more significant when the drought stress progressed, especially under severe drought stress in P. cathayana. Compared with P. cathayana, P. kangdingensis was able to maintain a superior height increase and leaf development under drought stress. Also, P. kangdingensis possessed greater increments in soluble protein, soluble sugar, free proline and antioxidant enzymes, but lower increments in MDA and H2O2 than did P. cathayana when the cuttings were exposed to progressive drought stress. Our results suggest that P. kangdingensis originating from the high altitude has a better drought tolerance than does P. cathayana originating from the low altitude. Furthermore, this study manifested that acclimation to drought stress are related the rapidity, severity, duration of the drought event and the altitude of two contrasting species. 2 Proteomic responses to drought stress in two contrasting poplar species originating from different altitudes The cuttings from a female clone of P. kangdingensis and P. cathayana were used to determine proteomic response to drought stress, respectively. Total proteins of the leaves were extracted by a combination of TCA-acetone and phenol, and separated by two-dimensional gel electrophoresis. More than 1,000 protein spots were reproducibly detected on each gel. 58 differentially expressed spots were detected under drought stress in P. cathayana and 22 drought-responsive proteins were identified by peptide mass fingerprint. 69 differentially expressed spots were detected under drought stress in P. kangdingensiss and 25 drought-responsive proteins were identified by peptide mass fingerprint. The identified proteins are involved in several processes, i.e., signal transduction, protein processing, redox homeostasis, CO2 fixation and energy metabolism. Although the proteins identified in this investigation represent only a very small part of the poplar leaf proteins, some of the novel drought-responsive proteins identified here may be involved in the establishment of homeostasis in response to drought stress in the woody plants. 3 Responses to salt stress in P. cathayana Cuttings from a female clone of P. cathayana were treated by Hoagland’s solution: 0, 50, 100 mM NaCl, respectively. Salinity significantly decreased the relative water content of leaves, the contents of chlorophyll a and chlorophyll b, CO2 assimilation rate (A) and stomatal conductance (gs) in both salt stress treatments,which suggested the chloroplast was affected by salt stress. The observed increases of H2O2 and malondialdehyde contents and electrolyte leakage suggested that salinity caused cellular damage, whereas the increases in compatible solutes and in the activities of antioxidant enzymes enhanced the salt tolerance. More than 1,000 protein spots were reproducibly detected on each gel, and 38 salt-responsive proteins were successfully identified by peptide mass fingerprint (PMF). 16 spots (spot 4, 10, 11, 14, 15, 21, 24, 26, 27, 28, 33, 34, 35, 36, 37 and 38) absent in the control sample were induced by the salt treatment, and three spots (spot 10,11 and 35) were present only in the severely salt-stressed treatment. The %vol of the differentially expressed proteins generally increased with progressing salt stress, except for the decreased %vol of two proteins (spot 1 and 2) under salt stress and the presence of spot 1 only in the control sample. Some of the novel salt-responsive proteins identified here may be involved in physiological, biochemical response to salt stress in P. cathayana, the other identified proteins play a role in numerous cellular functions, including signal transduction and protein processing. An integrated physiological, biochemical and proteomic approach was used here to systematically investigate salt acclimation in poplar.
Resumo:
光是植物赖以生存的重要环境因子,但是植物在获得光的同时不可避免的会受到紫外辐射的伤害。尤其是近年来,人类向大气中排放的大量氮氧化合物和氟氯烃类化合物(CFC’s)引起臭氧分子的分解,导致到达地球表面的紫外辐射增加,特别是UV-B辐射增强。而另一方面,植物对UV-B辐射反应的敏感性在种间和品种间存在差异,主要受植物基因型,生态型和生活型的控制。本项目分别以粗枝云杉和青杨组杨树为模式植物,从形态和生理生化方面分别研究了来自不同水分背景下的粗枝云杉种群和来自不同UV-B背景下的青杨种群在增强UV-B下的反应及其反应差异,并探讨了干旱、喷施外源脱落酸(ABA)对它们抗UV-B能力的影响。研究成果可为生态系统的恢复与重建提供理论依据和科学指导。主要研究结果如下: 1. 粗枝云杉的两个种群,湿润种群(来自四川黑水)和干旱种群(来自甘肃迭部)在水分良好和干旱状况下表现出对增强UV-B的不同响应。同时,干旱对粗枝云杉抗UV-B能力的影响也得到研究:两种胁迫共同作用时,干旱表现出在一定程度上减弱了增强UV-B对粗枝云杉的生理特性的影响。 干旱胁迫显著降低了两个粗枝云杉种群的光合同化速率(A), 气孔导度(gs)和PSII的有效光量子产量(Y), 同时,提高了非光化学猝灭效率(qN)和超氧化物歧化酶(SOD)的活性。与湿润种群相比,干旱种群抗旱性更强,表现为干旱种群拥有更高的SOD和干旱进一步加剧了UV-B的胁迫效应。 本研究中,干旱胁迫单独作用时,显著降低了青杨两个种群的生物量积累和气体交换,具体包括A、gs、蒸腾速率(E)和光合氮利用效率(PNUE),提高了两个种群的瞬时水分利用效率(WUEi)、长期水分利用效率(WUET)、碳同位素组分(δ13C)和氮含量(N)。同时,UV吸收物质和ABA含量也得到积累。另一方面,增强UV-B对青杨两个种群各个指标的影响,同干旱所引起的效应有着相似的趋势。同低海拔种群相比,高海拔种群有着更强的抗旱和抗UV-B能力,具体表现在高海拔种群有着更多的生物量积累,更强的气体交换和水分利用效率及更高水平的ABA和UV吸收物质含量。相比干旱诱导的生物量积累和气体交换的降低,在干旱和增强UV-B两个胁迫同时作用于青杨时,这种降低表现的更为明显。显著的干旱和UV-B的交互作用还表现在WUEi, WUET, δ13C, 可溶性蛋白含量, UV吸收物质含量, ABA, 叶片和茎中的N含量以及C/N比中。 3. 经过一个生长季的试验观察,增强UV-B、外源ABA及两因子共同作用对青杨的生物量积累、气体交换、内源ABA和UV吸收物质含量、抗氧化系统以及碳、氮含量和碳/氮比均产生显著影响。本试验中,青杨的两个种群分别来自中国西南部的不同海拔地区,高海拔种群来自青海大通而低海拔种群来自四川九寨。外源ABA的胁迫为直接喷施ABA到青杨叶片,而增强UV-B胁迫是利用平方波系统分别保证青杨苗暴露于外界UV-B强度和两倍于外界UV-B强度下。 研究结果显示,增强UV-B显著的降低了两个青杨种群的株高、基茎、总叶面积和总生物量等生长指标,同时也导致其A、gs、E和叶片中碳含量的减少。而显著增加了SOD和过氧化物酶(GPx)活性水平,诱导了过氧化氢(H2O2)和MDA的显著增加,促进了UV吸收物质和不同器官中内源ABA含量的显著积累。另一方面,外源ABA引起了青杨光合同化速率的下降,SOD和GPx酶活性的增强,H2O2 和 MDA含量也表现出显著增加,同时,内源ABA含量得到显著累积。同低海拔种群相比,高海拔种群具有更加抗UV-B和外源ABA的特性。显著的UV-B和ABA的交互作用表现在A, E, SOD和GPx活性,以及叶片和根部的内源ABA等一系列指标中。在所有胁迫下,叶片中的碳和氮含量同其在茎和根中的含量显著相关,另外,叶片和茎中的氮含量同茎中的碳含量显著相关。 Sunlight is an indispensable environment factor for plants survival and development. Meanwhile, photosynthetic organisms need sunlight and are thus, inevitably, exposed to UV radiation. Especially for recent years, ultraviolet radiation, especially UV-B reaching the Earth’s surface increased because of depletion of ozone layer resulted from emission of NxO and CFC’s from human activities. On the other hand, the sensitivity of plants to UV-B radiation depends on the species, developmental stage and experimental conditions. In this experiment, two populations of Picea asperata Mast from different water background and two populations of Populus cathayana Rehder from different altitude background were selected as model plants to assess the effects of enhanced UV-B radiation. Morphological and physiological traits induced by enhanced UV-B in each plant species were observed and the different responses were discussed, furthermore the influences of drought and exogenous ABA on responses induced by enhanced UV-B were studied. The study could provide a strong theoretical evidence and scientific direction for the afforestation and rehabilitation of ecosystem. The results are as follows: 1. Different responses of two contrasting Picea asperata Mast. populations to enhanced ultraviolet-B (UV-B) radiation under well-watered and drought conditions were investigated. And the effects of enhanced UV-B on tolerance of drought were also observed in our study that the UV-B exposure may have alleviated some of the damage induced by drought. Two contrasting populations, originating from a wet and dry climate region in China, respectively, were employed in our study. Drought significantly decreased CO2 assimilation rate (A), stomatal conductance (gs) and effective PSII quantum yield (Y), while it significantly increased non-photochemical quenching (qN) and the activity of superoxide dismutase (SOD) in both populations. Compared with the wet climate population, the dry climate population was more acclimated to drought stress and showed much higher activities of SOD and ascorbate peroxidase (APX), and much lower levels of malondialdehyde (MDA) and electrolyte leakage. On the other hand, enhanced UV-B radiation also induced a significant decrease in the chlorophyll (Chl) content in both populations under well-watered conditions, and a significant increase in UV-absorbing compounds in the wet climate population. After one growing season of exposure to different UV-B levels and watering regimes, the increases in MDA and electrolyte leakage, as induced by drought, were less pronounced under the combination of UV-B and drought. In addition, an additive effect of drought and UV-B on A and gs was observed in the wet climate population, and on the activity of APX and qN in the dry climate population. 2. The significant effects of drought, enhanced UV-B radiation and their combination on Populus cathayana Rehd. growth and physiological traits were investigated in two populations, originating from high and low altitudes in south-west China. Our results showed that UV-B acts as an important signal allowing P. cathayana seedlings to respond to drought and that the combination of drought and UV-B may cause synergistically detrimental effects on plant growth in both populations. In both populations, drought significantly decreased biomass accumulation and gas exchange parameters, including A, gs, E and photosynthetic nitrogen use efficiency (PNUE). However, instantaneous water use efficiency (WUEi), transpiration efficiency (WUET), carbon isotope composition (δ13C) and nitrogen (N) content, as well as the accumulation of soluble protein, UV-absorbing compounds and abscisic acid (ABA) were significantly increased by drought. On the other hand, cuttings from both populations, when kept under enhanced UV-B radiation conditions, showed very similar changes in all above-mentioned parameters, as induced by drought. Compared with the low altitude population, the high altitude population was more tolerant to drought and enhanced UV-B, as indicated by the higher level of biomass accumulation, gas exchange, water-use efficiency, ABA concentration and UV-absorbing compounds. After one growing season of exposure to different UV-B levels and watering regimes, the decrease in biomass accumulation and gas exchange, induced by drought, was more pronounced under the combination of UV-B and drought. Significant interactions between drought and UV-B were observed in WUEi, WUET, δ13C, soluble protein, UV-absorbing compounds, ABA and in the leaf and stem N, as well as in the leaf and stem C/N ratio. 3. During one growing season, significant effects induced by enhanced UV-B radiation, exogenous ABA and their combination on biomass accumulation, gas exchange, endogenous ABA and UV-absorbing compounds concentrations, antioxidant system as well as carbon (C) content, nitrogen (N) content and C/N ratio were investigated in two contrasting Populus cathayana populations, originating from high and low altitudes in south-west China. Exogenous ABA was sprayed to the leaves and enhanced UV-B treatment was using a square-wave system to make the seedlings under ambient (1×) or twice ambient (2×) doses of biologically effective UV-B radiation (UV-BBE). Enhanced UV-B radiation significantly decreased height, basal diameter, total leaf area, total biomass, A, gs, E and carbon (C) content in leaves, and significantly increased activities of SOD and guaiacol peroxidase (GPx), hydrogen peroxide (H2O2) and malonaldehyde (MDA) content as well as the accumulation of UV-absorbing compounds and endogenous ABA concentrations among different organs in both populations. In contrast, exogenous ABA showed significant decrease in A and significant increases in activities of SOD and GPx, H2O2, MDA content and the endogenous ABA concentrations. Compared with the low altitude population, the high altitude population was more tolerant to enhanced UV-B and exogenous ABA. Significant interactions between UV-B and ABA were observed in A, E, activities of SOD and GPx, as well as in endogenous ABA in leaves and roots of both populations. Across all treatments, C and N content in leaves was strongly correlated with those were in stems and roots, respectively. Additionally, leaf and stem N content were significant correlated with stem C content.
Resumo:
人类活动引起全球大气中温室气体(CO2、CH4、NOx)浓度不断增加,致使地球表面温度在过去的100 年中已经增长了0.74 ± 0.18℃,预计到本世纪末将会增加1.1-6.4℃。此外,氮沉降也是当今社会的重要环境问题,随着经济发展的全球化, 高氮沉降也呈现出全球化趋势。全球气候变暖和氮沉降给陆地生态系统的地上、地下生物学和生物地球化学过程所带来巨大影响越来越引起人们的关注。 本文以川西亚高山针叶林的两个重要树种云杉和油松幼苗为研究对象,采用红外辐射增温(空气增温2.1℃,土壤增温2.6℃)和根部施氮(施氮量25 g N m-2yr-1)的方法,从生长形态、光合作用、抗氧化能力和矿质营养等方面研究这两种幼苗对气候变暖和氮沉降的响应。该实验为室外控制实验,包括四个处理:(1)不增温+不施氮(UU);(2) 不增温+施氮(UF);(3) 增温+不施氮(WU);(4) 增温+施氮(WF)。本研究旨在从生理生化、物质代谢 、生长及形态等不同水平上研究模拟增温和施氮对两种树苗的联合效应,提高我们对全球变化下亚高山针叶林早期更新过程的理解,同时也为森林管理提供科学依据。具体研究结果如下: 单独增温处理显著提高了云杉和油松幼苗的地茎、叶重、茎重、根重以及总生物量;单独施氮处理也增加了两种幼苗的株高和总生物量。而增温和施氮联合作用对两种幼苗生长的影响并不相同,联合作用对云杉幼苗生长指标的正效应显著低于单独施氮处理,但是联合作用比单独增温或施氮更大程度的促进了油松幼苗生物量的积累。 单独增温和施氮都有利于提高云杉和油松叶片中叶绿素含量、净光合速率(A)、最大净光合速率(Amax)、表观量子效率(Φ)、最大光能转化效率(Fv/Fm)和量子产量(Y)。与对两种幼苗生长指标的影响相似,加氮和增温共同作用下油松幼苗的以上光合指标比在单独增温或施氮处理下有更大程度的提高;而联合作用下云杉幼苗叶绿素含量、净光合速率、最大净光合速率、表观量子效率、最大光能转化效率以及量子产量比单独施氮处理明显地降低。 增温和施氮都显著地降低了云杉和油松幼苗针叶组织中活性氧和丙二醛的积累。交互作用降低了云杉幼苗叶片的抗氧化酶活性、脯氨酸和ASA 的含量,却显著提高了油松幼苗SOD、POD、APX 等抗氧化酶的活性,并且对油松幼苗脯氨酸和ASA 积累的促进作用比单一因子更加明显。因此,增温和施氮共同作用下油松幼苗叶片中O2-产生速率、H2O2 及MDA 含量明显降低,而云杉叶片中只有O2-产生速率出现降低趋势。 增温和施氮都降低了云杉体内的P、Ca、Mg 元素的含量,增加了Cu、Zn、Mn 在各器官内的积累。对油松幼苗而言,增温和加氮单独作用也显著降低了Ca 含量增加了Cu、Zn、Mn 的积累,但是不同于云杉幼苗的是P、Mg 也显著增加。增温和施氮联合作用对云杉幼苗体内元素的影响与单一施氮处理或增温处理相似,不同的是比单一因子作用更为明显降低了P、Ca、Mg 含量,增加了植株中N、Cu、Zn、Mn 的含量,但是油松矿质元素含量在联合作用下并没有产生类似于云杉幼苗的双因子叠加效应。 总之,尽管单独增温或者施氮都有利于云杉和油松幼苗生长指标、光合能力以及抗氧化能力的提高。但是,增温和施氮对云杉幼苗生长生理的促进效应非但没有在交互作用下有更大的提高,反而低于单独氮处理。与此不同的是,增温和施氮联合作用比单因子作用更有利于油松幼苗生长及生理指标的提高。 With the continued increase in atmospheric concentrations of greenhouse gases (CO2、CH4、NOx), the mean global surface temperature has increased by about 0.74 ± 0.18℃ over the past century and is predicted to rise by as much as 6.4℃ during this century. Besides global warming, nitrogen deposition is another serious environmental problem caused by human activities, and high nitrogen load has become globalization as a result of global economy development. Global climate warming and nitrogen deposition have induced dramatic alternations in above - and below- ground biology and biogeochemistry process in terrestrial ecosystems, and more and more attention has been invited to those problems. This experiment mainly studies two important species Picea asperata and Pinus tabulaeformis in subalpine coniferous forest of western Sichuan, China. Infared heaters are induced to increase both air and soil temperature by 2.1℃ and 2.6 ℃, respectively. Ammonium nitrate solution (for a total equivalent to 25 g N m-2 year-1) is added to soil surface. There are four treatments in this study: (1) unwarmed unfertilized (UU); (2) unwarmed fertilized (UF); (3) warmed unfertilized (WU); (4) warmed fertilized (WF). This study is conducted to determine the influences of experimental warming and nitrogen fertilization on physiolchemistry, nutrition metabolism, growth and morphology in the two coniferous species seedlings. The current study is favorable for increasing our understanding on the early phase of regeneration behavior in subalpine coniferous forest, and it also provide scientific direction for forest management under future global changes. The results are as follows: Artificial warming alone significantly increased basal diameter, leaf mass, stem mass, root mass and total biomass for Picea asperata and Pinus tabulaeformis seedlings, and single nitrogen fertilization are also favorable for growth of the two species and stimulate plant hight and total biomass. The two species seedlings respond differently to the combination of elevated temperature and nitrogen addition. Warming combined with nitrogen fertilization weakens the positive effects of nitrogen addition for growth of Picea asperata seedlings. However, the combination of elevated temperature and nitrogen fertilization further increase biomass accumulation of Pinus tabulaeformis seedlings. Both elevated temperature alone and nitrogen fertilization alone can increase photosynthetic pigments contents, net photosynthetic rate (A), maximum net photosynthetic rate (Amax), apparent quantity yield (Φ), maximum photochemical efficiency of photosystem II (Fv/Fm) and effective quantum yield (Y). Similarly with growth parameters, the combination of warming and nitrogen addition induced more increment of these above photosynthetic parameters for Pinus tabulaeformis seedlings. However, these photosynthetic parameters of Picea asperata seedlings under the combination of warming and nitrogen addition are lower than those under nitrogen fertilization alone. The levels of active oxygen species (AOS) and malodiadehyde (MDA) in needles of the two coniferous species seedling are obviously decreased by experimental warming or additional nitrogen. Warming combined with nitrogen fertilizer reduces the activities of SOD, CAT and APX, and the contents of proline and ASA of Picea asperata seedlings, but the combination significantly increases activities of these antioxidant enzymes in needlels of Pinus tabulaeformis seedlings and further improves the accumulation of proline and ASA compared to either artificial warming or nitrogen addition. Therefore, the rate of O2 - production, the contents of H2O2 and MDA in needles of Pinus tabulaeformis seedlings are remarkably reduced by the combination of warming and nitrogen addition, but the combination only significantly decreased the rate of O2 - production of Picea asperata seedlings. Elevated temperature or nitrogen fertilization decrease the contents of P, Ca, Mg but increase Cu, Zn, Mn contents for Picea asperata seedlings. For Pinus tabulaeformis seedlings, elevated temperature alone and nitrogen fertilization alone decreased Ca, but increased P, Mg, Cu, Zn, Mn contents. The effects of the combination of warming and nitrogen addition on these element contents in needles of Picea asperata seedlings are added or multiplied the effects of warming and nitrogen addition alone, resulting in less contens of P, Ca, Mg and more contents of Cu, Zn, Mn than either elevated temperature or nitrogen fertilization. Howere, these adding or multipluing single-factor effects on contents of these elements are not observed in the case of Pinus tabulaeformis seedlings. In conclusion, growth parameters, photosynthetic capacities and antioxidant abilities of Picea tasperata and Pinus abulaeformis seedlings are improved by experimental warming or nitrogen fertilization. Interestingly, the positive effects of warming and nitrogen addition on growth and physiological performances are not multiplied by the combination of elevated temperature and nitrogen fertilization, even dempened for Picea asperata seedlings. However, for Pinus tabulaeformis seedlings, growth and physiological performances are further improved by the combination.