884 resultados para Peripheral fatigue
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Introduction: The ability to walk is impaired in obese by anthropometric factors (BMI and height), musculoskeletal pain and level of inactivity. Little is known about the influence of body adiposity and the acute response of the cardiovascular system during whole the 6-minute walk test (6mWT). Objective: To evaluate the effect of anthropometric measures (BMI and WHR waist-to-hip ratio), the effort heart and inactivity in ability to walk the morbidly obese. Materials and Methods: a total 36 morbidly obese (36.23 + 11.82 years old, BMI 49.16 kg/m2) were recruited from outpatient department of treatment of obesity and bariatric surgery in University Hospital Onofre Lopes and anthropometric measurements of obesity (BMI and WHR), pulmonary function, pattern habitual physical activity (Baecke Questionnaire) and walking capacity (6mWT). The patient was checking to measure: heart rate (HR), breathing frequency (BF), peripheral oxygen saturation, level of perceived exertion, systemic arterial pressure and duplo-produto (DP), moreover the average speed development and total distance walking. The data were analysed between gender and pattern of body adiposity, measuring the behavior minute by minute of walking. The Pearson and Spearmam correlation coefficients were calculated, and stepwise multiple Regression examined the predictors of walking capacity. All analyses were performed en software Statistic 6.0. Results: 20 obese patients had abdominal adiposity (WHR = 1.01), waist circumference was 135.8 cm in women (25) and 139.8 cm in men (10). Walked to the end of 6mWT 412.43 m, with no differences between gender and adiposity. The total distance walked by obesity alone was explained by BMI (45%), HR in the sixth minute (43%), the Baecke (24%) and fatigue (-23%). 88.6% of obese (31) performed the test above 60% of maximal HR, while the peak HR achieved at 5-minute of 6mWT. Systemic arterial pressure and DP rised after walking, but with no differences between gender and adiposity. Conclusion: The walk of obese didn´t suffers influence of gender or the pattern of body adiposity. The final distance walked is attributed to excess body weight, stress heart, the feeling of effort required by physical activity and level of sedentary to obese. With a minute of walking, the obeses achieved a range of intensity cardiovascular trainning
Resumo:
Pulmonary Rehabilitation, especially due to aerobic exercise, positive impact in reducing morbidity/mortality of patients with COPD, however the economic impact with costs of implementing simple programs of aerobic exercise are scarce. This is a blind randomized clinical trials, which aimed to evaluate the costs and benefits of a simple program of aerobic exercise in individuals with COPD, considering the financial costs of the Public Health System and its secondary endpoints. We evaluated lung function, the distance walked during six minutes of walking, the respiratory and peripheral muscle strength, quality of life related to health (QLRH), body composition and level of activity of daily living (ADL) before and after eight weeks of an aerobic exercise program consisting of educational guidance for both groups, control and intervention and supervised walks to the intervention group. The health costs generated in both groups were calculated following table Brazilian Public Health System. The sample consisted of forty patients, two being excluded in the initial phase of desaturation during the walk test six minutes. Were randomized into control and intervention group thirty-eight patients, three were excluded from the control group and one was excluded from the intervention group. At the end, thirty-four COPD comprised the sample, 16 in the control group and 18 in the intervention group (FEV1: 50.9 ± 14% pred and FEV1: 56 ± 0.5% pred, respectively). After for intervention, the intervention group showed improvement in meters walked, the sensation of dyspnea and fatigue at work, BODE index (p <0.01) in QLRH, ADL level (p <0.001) as well as increased strength lower limbs (p <0.05). The final cost of the program for the intervention group was R $ 148.75, including: assessments, hiking supervised by a physiotherapist and reassessments. No patient had exacerbation of IG, while 2 patients in the CG exacerbated, generating an average individual cost of R $ 689.15. The aerobic exercises in the form of walking showed significant clinical benefits and economic feasibility of its implementation, due to low cost and easy accessibility for patients, allowing them to add their daily practice of aerobic exercises
Resumo:
Chromium electrodeposition is a technique for the production of functional coatings on engineering components. These coatings are extensively micro-cracked and present high level of hardness, resistance to corrosion and wear and low coefficient of friction. In this paper the shot peening influence on the fatigue strength of aluminum 7050-T7451 alloy chromium electroplated, was investigated.The shot peening process was carried out to create residual stresses using ceramic and glass shots. A hard chromium electroplated coating of 100 mu m thickness was performed on the base material and the shot peened base material surfaces. S-N curves were obtained in axial and bending fatigue tests and compared with the 7050-T7451 aluminum alloy. In order to study the influence of residual stresses on fatigue life, the behavior of compressive residual stress field was measured by an X-ray tensometry.An increase in the axial fatigue strength of 25% and 50% of ceramic and glass shots, respectively, was observed. The lower performance in fatigue life for ceramic-shot peening may be attributed to higher surface damage, as a consequence of the overpeening intensity performed. However, in bending fatigue the behavior was practically equivalent for both processes. Fracture surface analysis by scanning electron microscopy was used to observe crack origin sites from shot peened and chromium electroplated samples. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
In recent years, with higher demand for improved quality and corrosion resistance, recovered substrates have been extensively used. Consequently residual stresses originated from these coatings reduce the fatigue strength of a component. Due to this negative influence occasioned by corrosion resistance protective coatings, an effective process like shot peening must be considered to improve the fatigue strength. The shot peening treatment pushes the crack sources beneath the surface in most of medium and high cycle cases due to the compressive residual stress field (CRSF) induced. The aim of this study was to evaluate the influence on the fatigue life of anodic films grown on 7050-T7451 aluminium alloy by sulphuric acid anodizing, chromic acid anodizing and hard anodizing. The influence on the rotating and reverse bending fatigue strength of anodic films grown on the aluminium alloy is to degrade the stress life fatigue performance of the base material.A consistent gain in fatigue life in relation to the base material was obtained through the shot peening process in coated specimens, associated to a residual stress field compressive near the surface, useful to avoid fatigue crack nucleation and delay or even stop crack propagation.
Resumo:
Deposition of wear-resistant hard chromium plating leads to a decrease in the fatigue strength of the base material. Despite the effective protection against wear and corrosion, fatigue life and environmental requirements result in pressure to identify alternatives or to improve conventional chromium electroplating mechanical characteristics. An interesting, environmentally safer and cleaner alternative for the replacement of hard chronic plating is tungsten carbide thermal spray coating, applied by high velocity oxyfuel (HVOF) process.To improve the fatigue strength of aeronautical steel chromium electroplated, shot peening is a successfully used method. Multiple lacer systems of coatings are considered to have larger resistance to crack propagation in comparison with simple layer.The aim of this study was to analyze the effect of nickel underplate on the fatigue strength of hard chromium plated AISI 4340 steel in two mechanical conditions: HRc 39 and HRc 52.Rotating bending fatigue tests results indicate that the clectroless nickel plating underlayer is responsible for the increase in fatigue strength of AISI 4340 steel chromium electroplated. This behavior may be attributed to the largest toughness/ductility and compressive residual stresses which, probably, arrested or delayed the inicrocrack propagation from the hard chromium external layer. The compressive residual stress field (CRSF) induced by the electroplating process was determined by X-ray diffraction method. The evolution of fatigue strength compressive residual stress field CRSF and crack sources are discussed and analyzed by SEM. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
One of the most interesting alternatives for replacement of hard chrome plating is tungsten carbide thermal spray coating applied by the high velocity oxy-fuel (HVOF) process which presents a safer, cleaner and less expensive alternative to chromium plating. The objective of this research is to compare the influence of the tungsten carbide-17cobalt (WC- 17Co) coating applied by high velocity oxy fuel (HVOF) process with that of hard-chromium electroplating on the fatigue strength and abrasive wear of AISI 4340 steel.
Resumo:
Internal residual stresses significantly influence the fatigue strength of coated materials. It is well known that chromium plating is the most used electrodeposited coating for important industrial applications. However, pressure to identify alternatives or to improve the chromium electroplating process have increased in recent years, related to the reduction in fatigue strength of the base material and to environmental requirements. The high efficiency and fluoride free hard chromium electroplating there called accelerated) is an improvement to the conventional process. One environmentally safer and cleaner alternative to hard chromium plating is tungsten carbide thermal spray coating applied by the High Velocity Oxy-Fuel (HVOF) process. To increase the fatigue strength of chromium plated materials, coating thickness and microcracks density are important parameters to be controlled. Techniques as compressive residual stresses induced by shot peening and multilayers, are also used. The aim of this study was to analyse the effects on AISI 4340 steel, in the rotating bending fatigue behaviour, of the: tungsten carbide thermal spray coating applied by HP/HVOF process; chemical nickel underplate, and shot peening process applied before coating deposition, in comparison to hard chromium electroplatings. Rotating bending fatigue test results indicate better performance for the conventional hard chromium plating in relation to the accelerated hard chromium electroplating. Tungsten carbide thermal spray coating and accelerated hard chromium plate over nickel resulted in higher fatigue strength when compared to samples conventional or accelerated hard chromium plated. Shot peening showed to be an excellent alternative to increase fatigue strength of AISI 4340 steel hard chromium electroplated. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
It is known that chromium electroplating is related to the reduction in the fatigue strength of base metal. However, chromium results in protection against wear and corrosion combined with chemical resistance and good lubricity. Environmental requirements are an important point to be considered in the search for possible alternatives to hard chrome plating. Aircraft landing gear manufactures are considering WC thermal spray coating applied by the high-velocity oxygen-fuel (HVOF) process an alternative candidate, which shows performance at least comparable to results, obtained for hard chrome plating. The aim of this study is to compare the influence of WC-17Co and WC-10Co-4Cr coatings applied by HVOF process and hard chromium electroplating on the fatigue strength of AISI 4340 steel, with and without shot peening. S-N curves were obtained in axial fatigue test for base material, chromium plated and tungsten carbide coated specimens. Tungsten carbide thermal spray coating results in higher fatigue strength when compared to hard chromium electroplated. Shot peening prior to thermal spraying showed to be an excellent alternative to increase fatigue strength of AISI 4340 steel. Experimental data showed higher axial fatigue and corrosion resistance in salt fog exposure for samples WC-10Co-4Cr HVOF coated when compared with WC-17Co. Fracture surface analysis by scanning electron microscopy (SEM) indicated the existence of a uniform coverage of nearly all substrates. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Residual stresses play an important role in the fatigue lives of structural engineering components. In the case of near surface tensile residual stresses, the initiation and propagation phases of fatigue process are accelerated; on the other hand, compressive residual stresses close to the surface may increase fatigue life. In both decorative and functional applications, chromium electroplating results in excellent wear and corrosion resistance. However, it is well known that it reduces the fatigue strength of a component. This is due to high tensile internal stresses and microcrack density. Efforts to improve hard chromium properties have increased in recent years. In this study, the effect of a nickel layer sulphamate process, as simple layer and interlayer, on fatigue strength of hard chromium electroplated AISI 4340 steel hardness - HRc 53, was analysed. The analysis was performed by rotating bending fatigue tests on AISI 4340 steel specimens with the following experimental groups: base material, hard chromium electroplated, sulphamate nickel electroplated, sulphamate nickel interlayer on hard chromium electroplated and electroless nickel interlayer on hard chromium electroplated. Results showed a decrease in fatigue strength in coated specimens and that both nickel plating interlayers were responsible for the increase in fatigue life of AISI 4340 chromium electroplated steel. The shot peening pre-treatment was efficient in reducing fatigue loss in the alternatives studied.
Resumo:
Recovered substrates have been extensively used in the aerospace field. Cadmium electroplating has been widely applied to promote protective coatings in aeronautical components, resulting in excellent corrosion protection combined with a good performance in cyclic loading. Ecological considerations allied to the increasing demands for corrosion resistance have resulted in the search for possible alternatives. Zinc-nickel (Zn-Ni) alloys have received considerable interest recently, because these coatings show advantages such as a good resistance to white and red rust, high plating rates, and acceptance in the market. In this study, the effect of electroplated Zn-Ni coatings on AISI 4340 high-strength steel was analyzed for rotating bending fatigue strength, corrosion, and adhesion resistance. The compressive residual stress field was measured by x-ray diffraction prior to fatigue tests. Optical microscopy documented coating thickness, adhesion characteristics, and coverage extent for nearly all substrates. Fractured fatigue specimens were investigated using scanning electron microscopy (SEM). Three different Zn-Ni coating thicknesses were tested, and comparisons with the rotating bending fatigue data from electroplated Cd specimens were performed. Experimental results differentiated the effects of the various coatings on the AISI 4340 steel behaviour when submitted to fatigue testing and the influence of coating thickness on the fatigue strength.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)