798 resultados para Penalty Clause
Resumo:
The finite element process is now used almost routinely as a tool of engineering analysis. From early days, a significant effort has been devoted to developing simple, cost effective elements which adequately fulfill accuracy requirements. In this thesis we describe the development and application of one of the simplest elements available for the statics and dynamics of axisymmetric shells . A semi analytic truncated cone stiffness element has been formulated and implemented in a computer code: it has two nodes with five degrees of freedom at each node, circumferential variations in displacement field are described in terms of trigonometric series, transverse shear is accommodated by means of a penalty function and rotary inertia is allowed for. The element has been tested in a variety of applications in the statics and dynamics of axisymmetric shells subjected to a variety of boundary conditions. Good results have been obtained for thin and thick shell cases .
Resumo:
Firstly, we numerically model a practical 20 Gb/s undersea configuration employing the Return-to-Zero Differential Phase Shift Keying data format. The modelling is completed using the Split-Step Fourier Method to solve the Generalised Nonlinear Schrdinger Equation. We optimise the dispersion map and per-channel launch power of these channels and investigate how the choice of pre/post compensation can influence the performance. After obtaining these optimal configurations, we investigate the Bit Error Rate estimation of these systems and we see that estimation based on Gaussian electrical current systems is appropriate for systems of this type, indicating quasi-linear behaviour. The introduction of narrower pulses due to the deployment of quasi-linear transmission decreases the tolerance to chromatic dispersion and intra-channel nonlinearity. We used tools from Mathematical Statistics to study the behaviour of these channels in order to develop new methods to estimate Bit Error Rate. In the final section, we consider the estimation of Eye Closure Penalty, a popular measure of signal distortion. Using a numerical example and assuming the symmetry of eye closure, we see that we can simply estimate Eye Closure Penalty using Gaussian statistics. We also see that the statistics of the logical ones dominates the statistics of the logical ones dominates the statistics of signal distortion in the case of Return-to-Zero On-Off Keying configurations.
Resumo:
After the application form is submitted, the interview is the most important method of human resource allocation. Previous research has shown that the attractiveness of interviewees can significantly bias interview outcome. We have previously shown that female interviewers give attractive male interviewees higher status job packages compared their average looking counterparts. However, it is not known whether male interviewers exhibit such biases. In the present study, participants were asked to take part in a mock job negotiation scenario where they had to allocate either a high- or low-status job package to attractive or average looking ``interviewees.'' Before each decision was made, the participant's anticipatory electrodermal response (EDR) was recorded. The results supported our previous finding in that female participants allocated a greater number of high-status job packages to attractive men. Additionally, male participants uniformly allocated a greater number of low-status job packages to both attractive men and attractive women. Overall, the average looking interviewees incurred a penalty and received a significantly greater number of low-status job packages. In general, the EDR profile for both male and female participants was significantly greater when allocating the low-status packages to the average looking interviewees. However, the male anticipatory EDR profile showed the greatest change when allocating attractive women with low-status job packages. We discuss these findings in terms of the potential biases that may occur at the job interview and place them within an evolutionary psychology framework.
Resumo:
Impairments characterization and performance evaluation of Raman amplified unrepeated DP-16QAM transmissions are conducted. Experimental results indicate that small gain in forward direction enhance the system signal-to-noise ratio for longer reach without introducing noticeable penalty.
Resumo:
We demonstrate that the transmission of 40 Gbits/s return-to-zero differential phase-shift keying (RZ-DPSK) signals is robust to lumped dispersion mapping on a typical installed terrestrial single-mode fiber/dispersion compensating fiber (SMF-DCF) link and will withstand, in this case, propagation through over 800 km of SMF with zero in-line group-velocity dispersion compensation while maintaining similar performance to configurations with periodic mapping. We establish that upgrading similar point-to-point links, which have lumped dispersion maps, are compatible with 40 Gbits/s RZ-DPSK and that economic benefits can be realized when implementing lumped dispersion mapping in new 40 Gbits/s RZ-DPSK terrestrial links, while incurring a relatively low performance penalty. (c) 2008 Optical Society of America.
Resumo:
Low-cost, high-capacity optical transmission systems are required for metropolitan area networks. Direct-detected multi-carrier systems are attractive candidates, but polarization mode dispersion (PMD) is one of the major impairments that limits their performance. In this paper, we report the first experimental analysis of the PMD tolerance of a 288Gbit/s NRZ-OOK Coherent Wavelength Division Multiplexing system. The results show that this impairment is determined primarily by the subcarrier baud rate. We confirm the robustness of the system to PMD by demonstrating error-free performance over an unrepeatered 124km field-installed single-mode fiber with a negligible penalty of 0.3dB compared to the back-to-back measurements. (C) 2010 Optical Society of America
Resumo:
Polarization-switched quadrature phase-shift keying has been demonstrated experimentally at 40.5Gb/s with a coherent receiver and digital signal processing. Compared to polarization-multiplexed QPSK at the same bit rate, its back-to-back sensitivity at 10-3 bit-error-ratio shows 0.9dB improvement, and it tolerates about 1.6dB higher launch power for 10 × 100km, 50GHz-spaced WDM transmission allowing 1dB penalty in required optical-signal-to-noise ratio relative to back-to-back.
Resumo:
We report the impact of cascaded reconfigurable optical add-drop multiplexer induced penalties on coherently-detected 28 Gbaud polarization multiplexed m-ary quadrature amplitude modulation (PM m-ary QAM) WDM channels. We investigate the interplay between different higher-order modulation channels and the effect of filter shapes and bandwidth of (de)multiplexers on the transmission performance, in a segment of pan-European optical network with a maximum optical path of 4,560 km (80km x 57 spans). We verify that if the link capacities are assigned assuming that digital back propagation is available, 25% of the network connections fail using electronic dispersion compensation alone. However, majority of such links can indeed be restored by employing single-channel digital back-propagation employing less than 15 steps for the whole link, facilitating practical application of DBP. We report that higher-order channels are most sensitive to nonlinear fiber impairments and filtering effects, however these formats are less prone to ROADM induced penalties due to the reduced maximum number of hops. Furthermore, it has been demonstrated that a minimum filter Gaussian order of 3 and bandwidth of 35 GHz enable negligible excess penalty for any modulation order.
Resumo:
In this letter, we directly compare digital back-propagation (DBP) with spectral inversion (SI) both with and without symmetry correction via dispersive chirping, and numerically demonstrate that predispersed SI outperforms traditional SI, and approaches the performance of computationally exhaustive ideal DBP. Furthermore, we propose for the first time a novel practical scheme employing predispersed SI to compensate the bulk of channel nonlinearities, and DBP to accommodate the residual penalties due to varying SI location, with predispersed SI ubiquitously employed along the transmission link with <;0.5-dB penalty. Our results also show that predispersed SI enables partial compensation of cross-phase modulation effects, increasing the transmission reach by ×2.
Resumo:
Future optical networks will require the implementation of very high capacity (and therefore spectral efficient) technologies. Multi-carrier systems, such as Orthogonal Frequency Division Multiplexing (OFDM) and Coherent WDM (CoWDM), are promising candidates. In this paper, we present analytical, numerical, and experimental investigations of the impact of the relative phases between optical subcarriers of CoWDM systems, as well as the effect that the number of independently modulated subcarriers can have on the performance. We numerically demonstrate a five-subcarrier and three-subcarrier 10-GBd CoWDM system with direct detected amplitude shift keying (ASK) and differentially/coherently detected (D) phase shift keying (PSK). The simulation results are compared with experimental measurements of a 32-Gbit/s DPSK CoWDM system in two configurations. The first configuration was a practical 3-modulator array where all three subcarriers were independently modulated, the second configuration being a traditional 2-modulator odd/even configuration, where only odd and even subcarriers were independently modulated. Simulation and experimental results both indicate that the independent modulation implementation has a greater dependency on the relative phases between subcarriers, with a stronger penalty for the center subcarrier than the odd/even modulation scheme.
Resumo:
We demonstrate the first experimental implementation of a 3.9-Gb/s differential binary phase-shift keying (DBPSK)-based double sideband (DSB) optical fast orthogonal frequency-division-multiplexing (FOFDM) system with a reduced subcarrier spacing equal to half the symbol rate over 300m of multimode fiber (MMF) using intensity-modulation and direct-detection (IM/DD). The required received optical power at a bit-error rate (BER) of 10(-3) was measured to be similar to -14.2 dBm with a receiver sensitivity penalty of only similar to 0.2 dB when compared to the back-to-back case. Experimental results agree very well with the theoretical predictions.
Resumo:
We show transmission of a 3x112-Gb/s DP-QPSK mode-division-multiplexed signal up to 80km, with and without multi-mode EDFA, using blind 6x6 MIMO digital signal processing. We show that the OSNR-penalty induced by mode-mixing in the multi-mode EDFA is negligible.
Resumo:
This research employs econometric analysis on a cross section of American electricity companies in order to study the cost implications associated with unbundling the operations of integrated companies into vertically and/or horizontally separated companies. Focusing on the representative sample average firm, we find that complete horizontal and vertical disintegration resulting in the creation of separate nuclear, conventional, and hydro electric generation companies as well as a separate firm distributing power to final consumers, results in a statistically significant 13.5 percent increase in costs. Maintaining a horizontally integrated generator producing nuclear, conventional, and hydro electric generation while imposing vertical separation by creating a stand alone distribution company, results in a lower but still substantial and statistically significant cost penalty amounting to an 8.1 % increase in costs relative to a fully integrated structure. As these results imply that a vertically separated but horizontally integrated generation firm would need to reduce the costs of generation by 11% just to recoup the cost increases associated with vertical separation, even the costs associated with just vertical unbundling are quite substantial. Our paper is also the first academic paper we are aware of that systematically considers the impact of generation mix on vertical, horizontal, and overall scope economies. As a result, we are able to demonstrate that the estimated cost of unbundling in the electricity sector is substantially influenced by generation mix. Thus, for example, we find evidence of strong vertical integration economies between nuclear and conventional generation, but little evidence for vertical integration benefits between hydro generation and the distribution of power. In contrast, we find strong evidence suggesting the presence of substantial horizontal integration economies associated with the joint production of hydro generation with nuclear and/or conventional fossil fuel generation. These results are significant because they indicate that the cost of unbundling the electricity sector will differ substantially in different systems, meaning that a blanket regulatory policy with regard to the appropriateness of vertical and horizontal unbundling is likely to be inappropriate.
Resumo:
We have reduced signal-signal four-wave mixing crosstalk in a fiber optical parametric amplifier (OPA) by using a short nonlinear fiber for the gain medium and a high-power pump. This allowed us to obtain less than 1 dB penalty for amplification of 26 dense wavelength-division multiplexed (WDM) channels modulated at 43.7Gb/s return to zero-differential phase-shift keying, with the OPA placed between transmitter and receiver. We then used the same OPA in several different roles for a long-haul transmission system. We did not insert the OPA within the loop, but investigated this role indirectly by using equivalent results for small numbers of loop recirculations. We found that standard erbium-doped fiber amplifiers currently hold an advantage over this OPA, which becomes negligible for long distances. This paper shows that at this time OPAs can handle amplification of WDM traffic in excess of 1 Tb/s with little degradation. It also indicates that with further improvements, fiber OPAs could be a contender for wideband amplification in future optical communication networks.
Resumo:
We present the impact of frequency offsetting of strong (e.g. 35 GHz) optical filters on the performance of 42.7 Gb/s 50% RZ-DPSK systems. The performance is evaluated when offsetting the filter by substantial amounts and it is found that with an offset of almost half the bit rate there is a significant improvement in the calculated 'Q' (> 1 dB). We deployed balanced, constructive single ended and destructive single ended detection, so that we could investigate the physical origins of the penalty reduction of asymmetric filtering of 42.7 Gb/s 50% RZ-DPSK system.