986 resultados para Pecking Order
Resumo:
A novel accurate numerical model for shallow water equations on sphere have been developed by implementing the high order multi-moment constrained finite volume (MCV) method on the icosahedral geodesic grid. High order reconstructions are conducted cell-wisely by making use of the point values as the unknowns distributed within each triangular cell element. The time evolution equations to update the unknowns are derived from a set of constrained conditions for two types of moments, i.e. the point values on the cell boundary edges and the cell-integrated average. The numerical conservation is rigorously guaranteed. in the present model, all unknowns or computational variables are point values and no numerical quadrature is involved, which particularly benefits the computational accuracy and efficiency in handling the spherical geometry, such as coordinate transformation and curved surface. Numerical formulations of third and fourth order accuracy are presented in detail. The proposed numerical model has been validated by widely used benchmark tests and competitive results are obtained. The present numerical framework provides a promising and practical base for further development of atmospheric and oceanic general circulation models. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
A new kind of shock capturing method is developed. Before applying the high order accurate traditional scheme which is called as base scheme in this paper the fluid parameters are preconditioned in order to control the group velocity. The newly constructed scheme is high order accurate, simple, has high resolution of the shock, and less computer time consumed.
Resumo:
We present an efficient method to generate a ultrashort attosecond (as) pulse when a model He+ ion is exposed to the combination of an intense few-cycle chirped laser pulse and its 27th harmonics. By solving the time-dependent Schroumldinger equation, we found that high-order harmonic generation (HHG) from He+ ion is enhanced by seven orders of magnitude due to the presence of the harmonic pulse. After optimizing the chirp of the fundamental pulse, we show that the cut-off energy of the generated harmonics is extended effectively to I-p+25.5U(p). As a result, an isolated 26-as pulse with a bandwidth of 170.5 eV can be obtained directly from the supercontinuum around the cut-off of HHG. To better understand the physical origin of HHG enhancement and attosecond pulse emission, we perform semiclassical simulations and analyze the time-frequency characteristics of attosecond pulse.
Resumo:
In this paper high-order harmonic generation (HHG) spectra and the ionization probabilities of various charge states of small cluster Na-2 in the multiphoton regimes are calculated by using time-dependent local density approximation (TDLDA) for one-colour (1064 nm) and two-colour (1064 nm and 532 nm) ultrashort (25 fs) laser pulses. HHG spectra of Na2 have not the large extent of plateaus due to pronounced collective effects of electron dynamics. In addition, the two-colour laser field can result in the breaking of the symmetry and generation of the even order harmonic such as the second order harmonic. The results of ionization probabilities show that a two-colour laser field can increase the ionization probability of higher charge state.
Resumo:
We investigate hard photon production of the near-collinear bremsstrahlung and a new process called the inelastic pair annihilation, fully including the LPM effect, in a chemically equilibrating quark-gluon plasma at finite baryon density, and find that the effect of the system evolution on the photon production and large contribution of the bremsstrahlung make the total photon yield of the two processes as a strongly increasing function of the initial quark chemical potential.
Resumo:
Isoscaling is derived within a recently proposed modified Fisher model where the free energy near the critical point is described by the Landau O(m(6)) theory. In this model m = N-f-Z(f)/A(f) is the order parameter, a consequence of (one of) the symmetries of the nuclear Hamiltonian. Within this framework we show that isoscaling depends mainly on this order parameter through the 'external (conjugate) field' H. The external field is just given by the difference in chemical potentials of the neutrons and protons of the two sources. To distinguish from previously employed isoscaling relationships, this approach is dubbed: m-scaling. We discuss the relationship between this framework and the standard isoscaling formalism and point out some substantial differences in interpretation of experimental results which might result. These should be investigated further both theoretically and experimentally. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In terms of single-atom induced dipole moment by Lewenstein model, we present the macroscopic high-order harmonic generation from mixed He and Ne gases with different mixture ratios by solving three-dimensional Maxwell's equation of harmonic field. And then we show the validity of mixture formulation by Wagner et al. [Phys. Rev. A 76 (2007) 061403(R)] in macroscopic response level. Finally, using least squares fitting we retrieve the electron return time of short trajectory by formulation in Kanai et al. [Phys. Rev. Lett. 98 (2007) 153904] when the gas jet is put after the laser focus.
Resumo:
The morphology transition of polystyrene-block-poly(butadiene)-block-poly(2-vinylpyridine) (SBV) triblock thin film induced in benzene vapor showing weak selectivity for PS is investigated. The order-order transitions (OOT) in the sequence of core-shell cylinders (C), sphere in 'diblock gyroid' (sdG), sphere in lamella (sL) and sphere (S) are observed. The projection along (111) direction in Gyroid phase (sdG(111)) is found to epitaxially grow from C(001) in the film.