956 resultados para Parallel Evolutionary Algorithms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of artificial nest-boxes has led to significant progress in bird conservation and in our understanding of the functional and evolutionary ecology of free-ranging birds that exploit cavities for roosting and reproduction. Nest-boxes and their improved accessibility have made it easier to perform comparative and experimental field investigations. However, concerns about the generality and applicability of scientific studies involving birds breeding in nest-boxes have been raised because the occupants of boxes may differ from conspecifics occupying other nest sites. Here we review the existing evidence demonstrating the importance of nest-box design to individual life-history traits in three falcon (Falconiformes) and seven owl (Strigiformes) species, as well as the extent to which publications on these birds describe the characteristics of exploited artificial nest-boxes in their 'methods' sections. More than 60% of recent publications did not provide any details on nest-box design (e.g. size, shape, material), despite several calls >15 years ago to increase the reporting of such information. We exemplify and discuss how variation in nest-box characteristics can affect or confound conclusions from nest-box studies and conclude that it is of overall importance to present details of nest-box characteristics in scientific publications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents an approach for mapping of precipitation data. The main goal is to perform spatial predictions and simulations of precipitation fields using geostatistical methods (ordinary kriging, kriging with external drift) as well as machine learning algorithms (neural networks). More practically, the objective is to reproduce simultaneously both the spatial patterns and the extreme values. This objective is best reached by models integrating geostatistics and machine learning algorithms. To demonstrate how such models work, two case studies have been considered: first, a 2-day accumulation of heavy precipitation and second, a 6-day accumulation of extreme orographic precipitation. The first example is used to compare the performance of two optimization algorithms (conjugate gradients and Levenberg-Marquardt) of a neural network for the reproduction of extreme values. Hybrid models, which combine geostatistical and machine learning algorithms, are also treated in this context. The second dataset is used to analyze the contribution of radar Doppler imagery when used as external drift or as input in the models (kriging with external drift and neural networks). Model assessment is carried out by comparing independent validation errors as well as analyzing data patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract : In the subject of fingerprints, the rise of computers tools made it possible to create powerful automated search algorithms. These algorithms allow, inter alia, to compare a fingermark to a fingerprint database and therefore to establish a link between the mark and a known source. With the growth of the capacities of these systems and of data storage, as well as increasing collaboration between police services on the international level, the size of these databases increases. The current challenge for the field of fingerprint identification consists of the growth of these databases, which makes it possible to find impressions that are very similar but coming from distinct fingers. However and simultaneously, this data and these systems allow a description of the variability between different impressions from a same finger and between impressions from different fingers. This statistical description of the withinand between-finger variabilities computed on the basis of minutiae and their relative positions can then be utilized in a statistical approach to interpretation. The computation of a likelihood ratio, employing simultaneously the comparison between the mark and the print of the case, the within-variability of the suspects' finger and the between-variability of the mark with respect to a database, can then be based on representative data. Thus, these data allow an evaluation which may be more detailed than that obtained by the application of rules established long before the advent of these large databases or by the specialists experience. The goal of the present thesis is to evaluate likelihood ratios, computed based on the scores of an automated fingerprint identification system when the source of the tested and compared marks is known. These ratios must support the hypothesis which it is known to be true. Moreover, they should support this hypothesis more and more strongly with the addition of information in the form of additional minutiae. For the modeling of within- and between-variability, the necessary data were defined, and acquired for one finger of a first donor, and two fingers of a second donor. The database used for between-variability includes approximately 600000 inked prints. The minimal number of observations necessary for a robust estimation was determined for the two distributions used. Factors which influence these distributions were also analyzed: the number of minutiae included in the configuration and the configuration as such for both distributions, as well as the finger number and the general pattern for between-variability, and the orientation of the minutiae for within-variability. In the present study, the only factor for which no influence has been shown is the orientation of minutiae The results show that the likelihood ratios resulting from the use of the scores of an AFIS can be used for evaluation. Relatively low rates of likelihood ratios supporting the hypothesis known to be false have been obtained. The maximum rate of likelihood ratios supporting the hypothesis that the two impressions were left by the same finger when the impressions came from different fingers obtained is of 5.2 %, for a configuration of 6 minutiae. When a 7th then an 8th minutia are added, this rate lowers to 3.2 %, then to 0.8 %. In parallel, for these same configurations, the likelihood ratios obtained are on average of the order of 100,1000, and 10000 for 6,7 and 8 minutiae when the two impressions come from the same finger. These likelihood ratios can therefore be an important aid for decision making. Both positive evolutions linked to the addition of minutiae (a drop in the rates of likelihood ratios which can lead to an erroneous decision and an increase in the value of the likelihood ratio) were observed in a systematic way within the framework of the study. Approximations based on 3 scores for within-variability and on 10 scores for between-variability were found, and showed satisfactory results. Résumé : Dans le domaine des empreintes digitales, l'essor des outils informatisés a permis de créer de puissants algorithmes de recherche automatique. Ces algorithmes permettent, entre autres, de comparer une trace à une banque de données d'empreintes digitales de source connue. Ainsi, le lien entre la trace et l'une de ces sources peut être établi. Avec la croissance des capacités de ces systèmes, des potentiels de stockage de données, ainsi qu'avec une collaboration accrue au niveau international entre les services de police, la taille des banques de données augmente. Le défi actuel pour le domaine de l'identification par empreintes digitales consiste en la croissance de ces banques de données, qui peut permettre de trouver des impressions très similaires mais provenant de doigts distincts. Toutefois et simultanément, ces données et ces systèmes permettent une description des variabilités entre différentes appositions d'un même doigt, et entre les appositions de différents doigts, basées sur des larges quantités de données. Cette description statistique de l'intra- et de l'intervariabilité calculée à partir des minuties et de leurs positions relatives va s'insérer dans une approche d'interprétation probabiliste. Le calcul d'un rapport de vraisemblance, qui fait intervenir simultanément la comparaison entre la trace et l'empreinte du cas, ainsi que l'intravariabilité du doigt du suspect et l'intervariabilité de la trace par rapport à une banque de données, peut alors se baser sur des jeux de données représentatifs. Ainsi, ces données permettent d'aboutir à une évaluation beaucoup plus fine que celle obtenue par l'application de règles établies bien avant l'avènement de ces grandes banques ou par la seule expérience du spécialiste. L'objectif de la présente thèse est d'évaluer des rapports de vraisemblance calcul és à partir des scores d'un système automatique lorsqu'on connaît la source des traces testées et comparées. Ces rapports doivent soutenir l'hypothèse dont il est connu qu'elle est vraie. De plus, ils devraient soutenir de plus en plus fortement cette hypothèse avec l'ajout d'information sous la forme de minuties additionnelles. Pour la modélisation de l'intra- et l'intervariabilité, les données nécessaires ont été définies, et acquises pour un doigt d'un premier donneur, et deux doigts d'un second donneur. La banque de données utilisée pour l'intervariabilité inclut environ 600000 empreintes encrées. Le nombre minimal d'observations nécessaire pour une estimation robuste a été déterminé pour les deux distributions utilisées. Des facteurs qui influencent ces distributions ont, par la suite, été analysés: le nombre de minuties inclus dans la configuration et la configuration en tant que telle pour les deux distributions, ainsi que le numéro du doigt et le dessin général pour l'intervariabilité, et la orientation des minuties pour l'intravariabilité. Parmi tous ces facteurs, l'orientation des minuties est le seul dont une influence n'a pas été démontrée dans la présente étude. Les résultats montrent que les rapports de vraisemblance issus de l'utilisation des scores de l'AFIS peuvent être utilisés à des fins évaluatifs. Des taux de rapports de vraisemblance relativement bas soutiennent l'hypothèse que l'on sait fausse. Le taux maximal de rapports de vraisemblance soutenant l'hypothèse que les deux impressions aient été laissées par le même doigt alors qu'en réalité les impressions viennent de doigts différents obtenu est de 5.2%, pour une configuration de 6 minuties. Lorsqu'une 7ème puis une 8ème minutie sont ajoutées, ce taux baisse d'abord à 3.2%, puis à 0.8%. Parallèlement, pour ces mêmes configurations, les rapports de vraisemblance sont en moyenne de l'ordre de 100, 1000, et 10000 pour 6, 7 et 8 minuties lorsque les deux impressions proviennent du même doigt. Ces rapports de vraisemblance peuvent donc apporter un soutien important à la prise de décision. Les deux évolutions positives liées à l'ajout de minuties (baisse des taux qui peuvent amener à une décision erronée et augmentation de la valeur du rapport de vraisemblance) ont été observées de façon systématique dans le cadre de l'étude. Des approximations basées sur 3 scores pour l'intravariabilité et sur 10 scores pour l'intervariabilité ont été trouvées, et ont montré des résultats satisfaisants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Performance prediction and application behavior modeling have been the subject of exten- sive research that aim to estimate applications performance with an acceptable precision. A novel approach to predict the performance of parallel applications is based in the con- cept of Parallel Application Signatures that consists in extract an application most relevant parts (phases) and the number of times they repeat (weights). Executing these phases in a target machine and multiplying its exeuction time by its weight an estimation of the application total execution time can be made. One of the problems is that the performance of an application depends on the program workload. Every type of workload affects differently how an application performs in a given system and so affects the signature execution time. Since the workloads used in most scientific parallel applications have dimensions and data ranges well known and the behavior of these applications are mostly deterministic, a model of how the programs workload affect its performance can be obtained. We create a new methodology to model how a program’s workload affect the parallel application signature. Using regression analysis we are able to generalize each phase time execution and weight function to predict an application performance in a target system for any type of workload within predefined range. We validate our methodology using a synthetic program, benchmarks applications and well known real scientific applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SummaryGene duplication and neofunctidnalization are important processes in the evolution of phenotypic complexity. They account for important evolutionary novelties that confer ecological adaptation, such as the major histocompatibility complex (MHC), a multigene family with a central role in vertebrates' adaptive immune system. Multigene families, which evolved in large part through duplication, represent promising systems to study the still strongly depbated relative roles of neutral and adaptive processes in the evolution of phenotypic complexity. Detailed knowledge on ecological function and a well-characterized evolutionary history place the mammals' MHC amongst ideal study systems. However mammalian MHCs usually encompass several million base pairs and hold a large number of functional and non-functional duplicate genes, which makes their study complex. Avian MHCs on the other hand are usually way more compact, but the reconstruction of. their evolutionary history has proven notoriously difficult. However, no focused attempt has been undertaken so far to study the avian MHC evolutionary history in a broad phylogenetic context and using adequate gene regions.In the present PhD, we were able to make important contributions to the understanding of the long-term evolution of the avian MHC class II Β (MHCI1B). First, we isolated and characterized MHCIIB genes in barn owl (Tyto alba?, Strigiformes, Tytonidae), a species from an avian lineage in which MHC has not been studied so far. Our results revealed that with only two functional MHCIIB genes the MHC organization of barn owl may be similar to the 'minimal essential' MHC of chicken (Gallus gallus), indicating that simple MHC organization may be ancestral to birds. Taking advantage of the sequence information from barn owl, we studied the evolution of MHCIIB genes in 13 additional species of 'typical' owls (Strigiformes, Strigidae). Phylogenetic analyses revealed that according to their function, in owls the peptide-binding region (PBR) encoding exon 2 and the non-PBR encoding exon 3 evolve by different patterns. Exon 2 exhibited an evolutionary history of positive selection and recombination, while exon 3 traced duplication history and revealed two paralogs evolving divergently from each other in owls, and in a shorebird, the great snipe {Gallinago media). The results from exon 3 were the first ever from birds to demonstrate gene orthology in species that diverged tens of millions of years ago, and strongly questioned whether the taxa studied before provided an adequate picture of avian MHC evolution. In a follow-up study, we aimed at explaining a striking pattern revealed by phylogenetic trees analyzing the owl sequences along with MHCIIB sequences from other birds: One owl paralog (termed DAB1) grouped with sequences of passerines and falcons, while the other (DAB2) grouped with wildfowl, penguins and birds of prey. This could be explained by either a duplication event preceding the evolution of these bird orders, or by convergent evolution of similar sequences in a number of orders. With extensive phylogenetic analyses we were able to show, that indeed a duplication event preceeded the major avian radiation -100 my ago, and that following this duplication, the paralogs evolved under positive selection. Furthermore, we showed that the divergently evolving amino acid residues in the MHCIIB-encoded β-chain potentially interact with the MHCI I α-chain, and that molecular coevolution of the interacting residues may have been involved in the divergent evolution of the MHCIIB paralogs.The findings of this PhD are of particular interest to the understanding of the evolutionary history of the avian MHC and, by providing essential information on long-term gene history in the avian MHC, open promising perspectives for advances in the understanding of the evolution of multigene families in general, and for avian MHC organization in particular. Amongst others I discuss the importance of including protein structure in the phylogenetic study of multigene families, and the roles of ecological versus molecular selection pressures. I conclude by providing a population genomic perspective on avian MHC, which may serve as a basis for future research to investigate the relative roles of neutral processes involving effective population size effects and of adaptation in the evolution of avian MHC diversity and organization.RésuméLa duplication de gènes et leur néo-fonctionnalisation sont des processus importants dans l'évolution de la complexité phénotypique. Ils sont impliqués dans l'apparition d'importantes nouveautés évolutives favorisant l'adaptation écologique, comme c'est le cas pour le complexe majeur d'histocompatibilité

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Las aplicaciones de alineamiento de secuencias son una herramienta importante para la comunidad científica. Estas aplicaciones bioinformáticas son usadas en muchos campos distintos como pueden ser la medicina, la biología, la farmacología, la genética, etc. A día de hoy los algoritmos de alineamiento de secuencias tienen una complejidad elevada y cada día tienen que manejar un volumen de datos más grande. Por esta razón se deben buscar alternativas para que estas aplicaciones sean capaces de manejar el aumento de tamaño que los bancos de secuencias están sufriendo día a día. En este proyecto se estudian y se investigan mejoras en este tipo de aplicaciones como puede ser el uso de sistemas paralelos que pueden mejorar el rendimiento notablemente.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents general problems and approaches for the spatial data analysis using machine learning algorithms. Machine learning is a very powerful approach to adaptive data analysis, modelling and visualisation. The key feature of the machine learning algorithms is that they learn from empirical data and can be used in cases when the modelled environmental phenomena are hidden, nonlinear, noisy and highly variable in space and in time. Most of the machines learning algorithms are universal and adaptive modelling tools developed to solve basic problems of learning from data: classification/pattern recognition, regression/mapping and probability density modelling. In the present report some of the widely used machine learning algorithms, namely artificial neural networks (ANN) of different architectures and Support Vector Machines (SVM), are adapted to the problems of the analysis and modelling of geo-spatial data. Machine learning algorithms have an important advantage over traditional models of spatial statistics when problems are considered in a high dimensional geo-feature spaces, when the dimension of space exceeds 5. Such features are usually generated, for example, from digital elevation models, remote sensing images, etc. An important extension of models concerns considering of real space constrains like geomorphology, networks, and other natural structures. Recent developments in semi-supervised learning can improve modelling of environmental phenomena taking into account on geo-manifolds. An important part of the study deals with the analysis of relevant variables and models' inputs. This problem is approached by using different feature selection/feature extraction nonlinear tools. To demonstrate the application of machine learning algorithms several interesting case studies are considered: digital soil mapping using SVM, automatic mapping of soil and water system pollution using ANN; natural hazards risk analysis (avalanches, landslides), assessments of renewable resources (wind fields) with SVM and ANN models, etc. The dimensionality of spaces considered varies from 2 to more than 30. Figures 1, 2, 3 demonstrate some results of the studies and their outputs. Finally, the results of environmental mapping are discussed and compared with traditional models of geostatistics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aplicació per a iPad a mode de repositori de continguts relacionats amb l'ensenyament d'assignatures d'informàtica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To make a comprehensive evaluation of organ-specific out-of-field doses using Monte Carlo (MC) simulations for different breast cancer irradiation techniques and to compare results with a commercial treatment planning system (TPS). Three breast radiotherapy techniques using 6MV tangential photon beams were compared: (a) 2DRT (open rectangular fields), (b) 3DCRT (conformal wedged fields), and (c) hybrid IMRT (open conformal+modulated fields). Over 35 organs were contoured in a whole-body CT scan and organ-specific dose distributions were determined with MC and the TPS. Large differences in out-of-field doses were observed between MC and TPS calculations, even for organs close to the target volume such as the heart, the lungs and the contralateral breast (up to 70% difference). MC simulations showed that a large fraction of the out-of-field dose comes from the out-of-field head scatter fluence (>40%) which is not adequately modeled by the TPS. Based on MC simulations, the 3DCRT technique using external wedges yielded significantly higher doses (up to a factor 4-5 in the pelvis) than the 2DRT and the hybrid IMRT techniques which yielded similar out-of-field doses. In sharp contrast to popular belief, the IMRT technique investigated here does not increase the out-of-field dose compared to conventional techniques and may offer the most optimal plan. The 3DCRT technique with external wedges yields the largest out-of-field doses. For accurate out-of-field dose assessment, a commercial TPS should not be used, even for organs near the target volume (contralateral breast, lungs, heart).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A population-genetic model indicates that if there is a gene responsible for homosexual behaviour it can readily spread in populations. The model also predicts widespread bisexuality in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Gemcitabine, oxaliplatin and 5-fluorouracil (5-FU) are active in biliary tract cancer and have a potentially synergistic mode of action and non-overlapping toxicity. The objective of these trials was to determine response, survival and toxicity separately in patients with bile duct cancer (BDC) and gallbladder cancer (GBC) treated with gemcitabine/oxaliplatin/5-FU chemotherapy. METHODS: Eligible patients with histologically proven, advanced or metastatic BDC (n=37) or GBC (n=35) were treated with gemcitabine (900 mg m(-2) over 30 min), oxaliplatin (65 mg m(-2)) and 5-FU (1500 mg m(-2) over 24 h) on days 1 and 8 of a 21-day cycle. Tumour response was the primary outcome measure. RESULTS: Response rates were 19% (95% CI: 6-32%) and 23% (95% CI: 9-37%) for BDC and GBC, respectively. Median survivals were 10.0 months (95% CI: 8.6-12.4) and 9.9 months (95% CI: 7.5-12.2) for BDC and GBC, respectively, and 1- and 2-year survival rates were 40 and 23% in BDC and 34 and 6% in GBC (intention-to-treat analysis). Major grade III and IV adverse events were neutropenia, thrombocytopenia, elevated bilirubin and anorexia. CONCLUSION: Triple-drug chemotherapy achieves comparable results for response and survival to previously reported regimens, but with more toxicity.