980 resultados para PLASMACYTOID DENDRITIC CELLS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hodgkin's lymphoma represents one of the most frequent lymphoproliferative syndromes, especially in young population. Although HL is considered one of the most curable tumors, a sizeable fraction of patients recur after successful upfront treatment or, less commonly, are primarily resistant. This work tries to summarize the data on clinical, histological, pathological, and biological factors in HL, with special emphasis on the improvement of prognosis and their impact on therapeutical strategies. The recent advances in our understanding of HL biology and immunology show that infiltrated immune cells and cytokines in the tumoral microenvironment may play different functions that seem tightly related with clinical outcomes. Strategies aimed at interfering with the crosstalk between tumoral Reed-Sternberg cells and their cellular partners have been taken into account in the development of new immunotherapies that target different cell components of HL microenvironment. This new knowledge will probably translate into a change in the antineoplastic treatments in HL in the next future and hopefully will increase the curability rates of this disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Therapeutic cancer vaccines aim to boost the natural immunity against transformed cancer cells, and a series of adjuvants and co-stimulatory molecules have been proposed to enhance the immune response against weak self-antigens expressed on cancer cells. For instance, a peptide/CpG-based cancer vaccine has been evaluated in several clinical trials and was shown in pre-clinical studies to favor the expansion of effector T versus Tregs cells, resulting in a potent antitumor activity, as compared to other TLR ligands. Alternatively, the adjuvant activity of CD1d-restricted invariant NKT cells (iNKT) on the innate and adaptive immunity is well demonstrated, and several CD1d glycolipid ligands are under pre-clinical and clinical evaluation. Importantly, additive or even synergistic effects have been shown upon combined CD1d/NKT agonists and TLR ligands. The aim of the present study is to combine the activation and tumor targeting of activated iNKT, NK and T cells. METHODS: Activation and tumor targeting of iNKT cells via recombinant α-galactosylceramide (αGC)-loaded CD1d-anti-HER2 fusion protein (CD1d-antitumor) is combined or not with OVA peptide/CpG vaccine. Circulating and intratumoral NK and H-2Kb/OVA-specific CD8 responses are monitored, as well as the state of activation of dendritic cells (DC) with regard to activation markers and IL-12 secretion. The resulting antitumor therapy is tested against established tumor grafts of B16 melanoma cells expressing human HER2 and ovalbumin. RESULTS: The combined CD1d/iNKT antitumor therapy and CpG/peptide-based immunization leads to optimized expansion of NK and OVA-specific CD8 T cells (CTLs), likely resulting from the maturation of highly pro-inflammatory DCs as seen by a synergistic increase in serum IL-12. The enhanced innate and adaptive immune responses result in higher tumor inhibition that correlates with increased numbers of OVA-specific CTLs at the tumor site. Antibody-mediated depletion experiments further demonstrate that in this context, CTLs rather than NK cells are essential for the enhanced tumor inhibition. CONCLUSIONS: Altogether, our study in mice demonstrates that αGC/CD1d-antitumor fusion protein greatly increases the efficacy of a therapeutic CpG-based cancer vaccine, first as an adjuvant during T cell priming and second, as a therapeutic agent to redirect immune responses to the tumor site.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of T cells from pluripotent stem cells involves a coordinated series of lineage-commitment steps. Common lymphoid precursors in the fetal liver or adult bone marrow must first choose between a T, B or NK cell fate. Committed T cell precursors in the thymus then differentiate into cells committed to the alphabeta or gammadelta lineages. Recent advances have been made in our understanding of the mechanisms underlying T cell fate specification and alphabeta/gammadelta lineage divergence.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Viral haemorrhagic fevers (VHF) caused by arenaviruses are among the most devastating emerging human diseases. The most important pathogen among the arenaviruses is Lassa virus (LASV), the causative agent of Lassa fever that is endemic to West Africa. On the South American continent, the New World arenavirus Junin virus (JUNV), Machupo (MACV), Guanarito (GTOV), and Sabia virus (SABV) have emerged as causative agents of severe VHFs. Clinical and experimental studies on arenavirus VHF have revealed a crucial role of the endothelium in their pathogenesis. However, in contrast to other VHFs, haemorrhages are not a salient feature of Lassa fever and fatal cases do not show overt destruction of vascular tissue. The functional alteration of the vascular endothelium that precede shock and death in fatal Lassa fever may be due to more subtle direct or indirect effects of the virus on endothelial cells. Haemorrhagic disease manifestations and vascular involvement are more pronounced in the VHF caused by the South American haemorrhagic fever viruses. Recent studies on JUNV revealed perturbation of specific endothelial cell function, including expression of cell adhesion molecules, coagulation factors, and vasoactive mediators as a consequence of productive viral infection. These studies provided first possible links to some of the vascular abnormalities observed in patients, however, their relevance in vivo remains to be investigated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Heart transplantation is the treatment of choice for many patients with end-stage heart failure. Its success, however, is limited by organ shortage, side effects of immunosuppressive drugs, and chronic rejection. Gene therapy is conceptually appealing for applications in transplantation, as the donor organ is genetically manipulated ex vivo before transplantation. Localised expression of immunomodulatory genes aims to create a state of immune privilege within the graft, which could eliminate the need for systemic immunosuppression. In this review, recent advances in the development of gene therapy in heart transplantation are discussed. Studies in animal models have demonstrated that genetic modification of the donor heart with immunomodulatory genes attenuates ischaemia-reperfusion injury and rejection. Alternatively, bone marrow-derived cells genetically engineered with donor-type major histocompatibility complex (MHC) class I or II promote donor-specific hyporesponsiveness. Genetic engineering of naïve T cells or dendritic cells may induce regulatory T cells and regulatory dendritic cells. Despite encouraging results in animal models, however, clinical gene therapy trials in heart transplantation have not yet been started. The best vector and gene to be delivered remain to be identified. Pre-clinical studies in non-human primates are needed. Nonetheless, the potential of gene therapy as an adjunct therapy in transplantation is essentially intact.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Members of the tumor necrosis factor (TNF) family induce pleiotropic biological responses, including cell growth, differentiation, and even death. Here we describe a novel member of the TNF family, designated BAFF (for B cell activating factor belonging to the TNF family), which is expressed by T cells and dendritic cells. Human BAFF was mapped to chromosome 13q32-34. Membrane-bound BAFF was processed and secreted through the action of a protease whose specificity matches that of the furin family of proprotein convertases. The expression of BAFF receptor appeared to be restricted to B cells. Both membrane-bound and soluble BAFF induced proliferation of anti-immunoglobulin M-stimulated peripheral blood B lymphocytes. Moreover, increased amounts of immunoglobulins were found in supernatants of germinal center-like B cells costimulated with BAFF. These results suggest that BAFF plays an important role as costimulator of B cell proliferation and function.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND & AIMS: Regulation of gene expression in the follicle-associated epithelium (FAE) over Peyer's patches is largely unknown. CCL20, a chemokine that recruits immature dendritic cells, is one of the few FAE-specific markers described so far. Lymphotoxin beta (LTalpha1beta2) expressed on the membrane of immune cells triggers CCL20 expression in enterocytes. In this study, we measured expression profiles of LTalpha1beta2-treated intestinal epithelial cells and selected CCL20 -coregulated genes to identify new FAE markers. METHODS: Genomic profiles of T84 and Caco-2 cell lines treated with either LTalpha1beta2, flagellin, or tumor necrosis factor alpha were measured using the Affymetrix GeneChip U133A. Clustering analysis was used to select CCL20 -coregulated genes, and laser dissection microscopy and real-time polymerase chain reaction on human biopsy specimens was used to assess the expression of the selected markers. RESULTS: Applying a 2-way analysis of variance, we identified regulated genes upon the different treatments. A subset of genes involved in inflammation and related to the nuclear factor kappaB pathway was coregulated with CCL20 . Among these genes, the antiapoptotic factor TNFAIP3 was highly expressed in the FAE. CCL23 , which was not coregulated in vitro with CCL20 , was also specifically expressed in the FAE. CONCLUSIONS: We have identified 2 novel human FAE specifically expressed genes. Most of the CCL20 -coregulated genes did not show FAE-specific expression, suggesting that other signaling pathways are critical to modulate FAE-specific gene expression.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Inflammatory bowel disease (IBD) is characterized by chronic intestinal inflammation due to dysregulation of the mucosal immune system. The cytokines IL-1β and IL-18 appear early in intestinal inflammation and their pro-forms are processed via the caspase-1-activating multiprotein complex, the Nlrp3 inflammasome. Previously, we reported that the uptake of dextran sodium sulfate (DSS) by macrophages activates the Nlrp3 inflammasome and that Nlrp3(-/-) mice are protected in the acute DSS colitis model. Of note, other groups have reported opposing effects in regards to DSS susceptibility in Nlrp3(-/-) mice. Recently, mice lacking inflammasomes were found to develop a distinct intestinal microflora. Methods: To reconcile the contradicting observations, we investigated the role of Nlrp3 deficiency in two different IBD models: acute DSS colitis and TNBS (2,4,6-trinitrobenzene sulfonic acid)-induced colitis. In addition, we investigated the impact of the intestinal flora on disease severity by performing cohousing experiments of wild-type and Nlrp3(-/-) mice, as well as by antibiotic treatment. Results: Nlrp3(-/-) mice treated with either DSS or TNBS exhibited attenuated colitis and lower mortality. This protective effect correlated with an increased frequency of CD103+ lamina propria dendritic cells expressing a tolerogenic phenotype in Nlrp3(-/-) mice in steady state conditions. Interestingly, after cohousing, Nlrp3(-/-) mice were as susceptible as wild-type mice, indicating that transmission of endogenous bacterial flora between the two mouse strains might increase susceptibility of Nlrp3(-/-) mice towards DSS-induced colitis. Accordingly, treatment with antibiotics almost completely prevented colitis in the DSS model. Conclusions: The composition of the intestinal microflora significantly influences disease severity in IBD models comparing wild-type and Nlrp3(-/-) mice. This observation may - at least in part - explain contradictory results concerning the role of the inflammasome in different labs. Further studies are required to define the role of the Nlrp3 inflammasome in noninflamed mucosa under steady state conditions and in IBD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mucosal epithelia of the digestive tract acts as a selective barrier, permeable to ions, small molecules and macromolecules. These epithelial cells aid the digestion of food and absorption of nutrients. They contribute to the protection against pathogens and undergo continuous cell renewal which facilitates the elimination of damaged cells. Both innate and adaptive defence mechanisms protect the gastrointestinal-mucosal surfaces against pathogens. Interaction of microorganisms with epithelial cells triggers a host response by activating specific transcription factors which control the expression of chemokines and cytokines. This host response is characterized by the recruitment of macrophages and neutrophils at the site of infection. Disruption of epithelial signalling pathways that recruit migratory immune cells results in a chronic inflammatory response. The adaptive defence mechanism relies on the collaboration of epithelial cells (resident sampling system) with antigen-presenting and lymphoid cells (migratory sampling system); in order to obtain samples of foreign antigen, these samples must be transported across the barriers without affecting the integrity of the barrier. These sampling systems are regulated by both environmental and host factors. Fates of the antigen may differ depending on the way in which they cross the epithelial barrier, i.e. via interaction with motile dendritic cells or epithelial M cells in the follicle-associated epithelium.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The tumor microenvironment mediates induction of the immunosuppressive programmed cell death-1 (PD-1) pathway, and targeted interventions against this pathway can help restore antitumor immunity. To gain insight into these responses, we studied the interaction between PD-1 expressed on T cells and its ligands (PD-1:PD-L1, PD-1:PD-L2, and PD-L1:B7.1), expressed on other cells in the tumor microenvironment, using a syngeneic orthotopic mouse model of epithelial ovarian cancer (ID8). Exhaustion of tumor-infiltrating lymphocytes (TIL) correlated with expression of PD-1 ligands by tumor cells and tumor-derived myeloid cells, including tumor-associated macrophages (TAM), dendritic cells, and myeloid-derived suppressor cells (MDSC). When combined with GVAX or FVAX vaccination (consisting of irradiated ID8 cells expressing granulocyte macrophage colony-stimulating factor or FLT3 ligand) and costimulation by agonistic α-4-1BB or TLR 9 ligand, antibody-mediated blockade of PD-1 or PD-L1 triggered rejection of ID8 tumors in 75% of tumor-bearing mice. This therapeutic effect was associated with increased proliferation and function of tumor antigen-specific effector CD8(+) T cells, inhibition of suppressive regulatory T cells (Treg) and MDSC, upregulation of effector T-cell signaling molecules, and generation of T memory precursor cells. Overall, PD-1/PD-L1 blockade enhanced the amplitude of tumor immunity by reprogramming suppressive and stimulatory signals that yielded more powerful cancer control.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ABSTRACT Allergic asthma is a major complication of atopy. Its severity correlates with the presence of activated T lymphocytes and eosinophils in the bronchoalveolar lavage fluid (BALF). Mechanisms that protect against asthma are poorly understood. Based on oral models of mucosal tolerance induction, models using the nasal route showed that uptake of important amounts of antigen can induce tolerance and reverse the allergic phenotype. 1L-10 producing regulatory T cells were proposed as key players in tolerance induction, but other players, e.g. dendritic cells (DC), B cells and epithelial cells may have to be taken into consideration. The objective of the present study is to characterize the effects of a therapeutic intranasal treatment (INT) in a murine model of asthma and to determine, in this model, the cellular and molecular mechanisms leading to protection against asthma. First, we established an asthma model by sensitizing the BALB/c mouse to ovalbumin (OVA) by two intraperitoneal injections of alum-adsorbed OVA and three inhalations of aerosolized OVA. Then OVA was applied to the nasal mucosa of OVA- sensitized mice. Mice were later re-exposed to OVA aerosols to assess the protection induced by OVA INT. OVA sensitization induced strong eosinophil recruitment, OVA-specific T cell proliferation and IgE production. Three intranasal treatments at 24-hour intervals with 1.5 mg OVA drastically reduced inflammatory cell recruitment into the BALF and inhibited OVA-specific IgE production upon allergen re-exposure. T cell proliferation in ex vivo bronchial lymph node (BLN) cells was inhibited, as well as TH2 cytokine production. Protection against OVA-induced bronchial inflammation was effective for an extended period of time and treated mice resisted a second re-exposure. Transfer of CD4+ cells from BLN and lungs of OVA-treated mice protected asthmatic recipient mice from subsequent aerosol challenge indicating an involvement of CD4+ T regulatory cells in this protection. RESUME L'asthme allergique est une manifestation clinique majeure de l'atopie. La sévérité de l'asthme est liée à la présence de lymphocytes T activés ainsi que d'éosinophiles dans le lavage broncho-alvéolaire (LBA). Les mécanismes permettant de se prémunir contre l'asthme sont mal connus. Basés sur des modèles muqueux d'induction de tolérance par la voie orale, des modèles utilisant la voie nasale ont montré que d'importantes quantités d'antigène peuvent induire une tolérance et ainsi reverser le phénotype allergique. Des cellules régulatrices produisant de l'IL-10 pourraient jouer un rôle clé dans l'induction de la tolérance mais d'autres acteurs tels que les cellules dendritiques, les cellules B et les cellules épithéliales doivent aussi être prises en compte. L'objectif de la présente étude est de caractériser les effets d'un traitement intranasal thérapeutique dans un modèle murin d'asthme et de déterminer dans ce modèle les mécanismes cellulaires et moléculaires conférant une protection contre l'asthme. En premier lieu, un modèle d'asthme allergique a été établi en sensibilisant des souris BALB/c à l'ovalbumine (OVA) par deux injections intraperitonéales d'OVA adsorbé sur de l'alum et trois séances d'OVA en aérosol. Dans un second temps, de l'OVA a été administrée sur la muqueuse nasale des souris sensibilisées à l'OVA. Les souris furent ensuite challengées par des aérosols d'OVA afin d'évaluer la protection conférée par le traitement intranasal à l'OVA. La sensibilisation à l'OVA a induit un fort recrutement d'éosinophiles, une réponse proliférative des cellules T à l'OVA ainsi qu'une production d'lgE spécifiques. Trois traitements intranasaux à 24 heures d'intervalle avec 1.5 mg d'OVA ont permis de réduire drastiquement le recrutement des cellules inflammatoires dans le LBA ainsi que d'inhiber la production d'lgE spécifiques à l'OVA produits lors d'une ré-exposition à l'OVA. La prolifération en réponse à l'OVA de cellules extraites ex vivo de ganglions bronchiques a, elle aussi, été inhibée de même que la production de cytokines TH2. La protection contre l'inflammation provoquée par l'aérosol est efficace pour une longue période et les souris traitées résistent à une seconde ré- exposition. Le transfert de cellules CD4+ issues de ganglions bronchiques et de poumons de souris traitées à l'OVA protège les souris asthmatiques receveuses contre les effets inflammatoires d'un aérosol, indiquant que des cellules T CD4+ régulatrices pourraient être impliquées dans cette protection. RESUME DESTINE A UN LARGE PUBLIC L'asthme est une affection des voies respiratoires qui se caractérise par une contraction de la musculature des voies aériennes, une production de mucus et d'anticorps de l'allergie (IgE). On parle d'asthme allergique lorsque les facteurs déclenchant l'asthme sont des allergènes inhalés tels que acariens, pollens ou poils d'animaux. Le système immunitaire des patients asthmatiques a un défaut de programmation qui le rend réactif à des substances qui sont normalement inoffensives. Le traitement actuel de l'asthme repose sur le soulagement des symptômes grâce à des produits à base de stéroïdes. Les techniques permettant de reprogrammer le système immunitaire (immunothérapie) ne sont pas efficaces pour tous les antigènes et prennent beaucoup de temps. En conséquence, il est nécessaire de mieux comprendre les mécanismes sous-tendant une telle reprogrammation afin d'en améliorer le rendement et l'efficacité. Dans ce but, des modèles d'immunothérapie ont été mis au point chez la souris. Ils permettent une plus grande liberté d'investigation. Dans cette étude, un modèle d'asthme allergique dans la souris a été établi par une sensibilisation à un antigène particulier : l'ovalbumine (OVA). Ce modèle présente les caractéristiques principales de l'asthme humain : recrutement de cellules inflammatoires dans les poumons, augmentation de la production d'anticorps et de la résistance des bronches aux flux respiratoires. Cette souris asthmatique a ensuite été traitée par application nasale d'OVA. Comparées aux souris non traitées, les souris traitées à l'OVA ont moins de cellules inflammatoires dans leurs poumons et produisent moins d'anticorps IgE. D'autres marqueurs inflammatoires sont aussi fortement diminués. Des cellules de poumons ou de ganglions bronchiques prélevées sur des souris traitées injectées dans des souris asthmatiques améliorent les symptômes de l'asthme. Ces cellules pourraient donc avoir un rôle régulateur dans l'asthme. Les caractériser et les étudier afin d'être capable de les générer est crucial pour les futures thérapies de l'asthme.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fungal pathogens are a frequent cause of opportunistic infections. They live as commensals in healthy individuals but can cause disease when the immune status of the host is altered. T lymphocytes play a critical role in pathogen control. However, specific Ags determining the activation and function of antifungal T cells remain largely unknown. By using an immunoproteomic approach, we have identified for the first time, to our knowledge, a natural T cell epitope from Candida albicans. Isolation and sequencing of MHC class II-bound ligands from infected dendritic cells revealed a peptide that was recognized by a major population of all Candida-specific Th cells isolated from infected mice. Importantly, human Th cells also responded to stimulation with the peptide in an HLA-dependent manner but without restriction to any particular HLA class II allele. Immunization of mice with the peptide resulted in a population of epitope-specific Th cells that reacted not only with C. albicans but also with other clinically highly relevant species of Candida including the distantly related Candida glabrata. The extent of the reaction to different Candida species correlated with their degree of phylogenetic relationship to C. albicans. Finally, we show that the newly identified peptide acts as an efficient vaccine when used in combination with an adjuvant inducing IL-17A secretion from peptide-specific T cells. Immunized mice were protected from fatal candidiasis. Together, these results uncover a new immune determinant of the host response against Candida ssp. that could be exploited for the development of antifungal vaccines and immunotherapies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Secretory IgA (SIgA) plays an important role in the protection and homeostatic regulation of intestinal, respiratory, and urogenital mucosal epithelia separating the outside environment from the inside of the body. This primary function of SIgA is referred to as immune exclusion, a process that limits the access of numerous microorganisms and mucosal antigens to these thin and vulnerable mucosal barriers. SIgA has been shown to be involved in avoiding opportunistic pathogens to enter and disseminate in the systemic compartment, as well as tightly controlling the necessary symbiotic relationship existing between commensals and the host. Clearance by peristalsis appears thus as one of the numerous mechanisms whereby SIgA fulfills its function at mucosal surfaces. Sampling of antigen-SIgA complexes by microfold (M) cells, intimate contact occurring with Peyer's patch dendritic cells (DC), down-regulation of inflammatory processes, modulation of epithelial, and DC responsiveness are some of the recently identified processes to which the contribution of SIgA has been underscored. This review aims at presenting, with emphasis at the biochemical level, how the molecular complexity of SIgA can serve these multiple and non-redundant modes of action.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mouse mammary tumor virus (MMTV[SW]) encodes a superantigen expressed by infected B cells. It evokes an antibody response specific for viral envelope protein, indicating selective activation of antigen-specific B cells. The response to MMTV(SW) in draining lymph nodes was compared with the response to haptenated chicken gamma globulin (NP-CGG) using flow cytometry and immunohistology. T cell priming occurs in both responses, with T cells proliferating in association with interdigitating dendritic cells in the T zone. T cell proliferation continues in the presence of B cells in the outer T zone, and B blasts then undergo exponential growth and differentiation into plasma cells in the medullary cords. Germinal centers develop in both responses, but those induced by MMTV(SW) appear later and are smaller. Most T cells activated in the T zone and germinal centers in the MMTV(SW) response are superantigen specific and these persist for weeks in lymph nodes draining the site MMTV(SW) injection: this contrasts with the selective loss of superantigen-specific T cells from other secondary lymphoid tissues. The results indicate that this viral superantigen, when expressed by professional antigen-presenting cells, drives extrafollicular and follicular B cell differentiation leading to virus-specific antibody production.