899 resultados para PERTURBED ANGULAR CORRELATIONS
Resumo:
Il crescente utilizzo di sistemi di analisi high-throughput per lo studio dello stato fisiologico e metabolico del corpo, ha evidenziato che una corretta alimentazione e una buona forma fisica siano fattori chiave per la salute. L'aumento dell'età media della popolazione evidenzia l'importanza delle strategie di contrasto delle patologie legate all'invecchiamento. Una dieta sana è il primo mezzo di prevenzione per molte patologie, pertanto capire come il cibo influisce sul corpo umano è di fondamentale importanza. In questo lavoro di tesi abbiamo affrontato la caratterizzazione dei sistemi di imaging radiografico Dual-energy X-ray Absorptiometry (DXA). Dopo aver stabilito una metodologia adatta per l'elaborazione di dati DXA su un gruppo di soggetti sani non obesi, la PCA ha evidenziato alcune proprietà emergenti dall'interpretazione delle componenti principali in termini delle variabili di composizione corporea restituite dalla DXA. Le prime componenti sono associabili ad indici macroscopici di descrizione corporea (come BMI e WHR). Queste componenti sono sorprendentemente stabili al variare dello status dei soggetti in età, sesso e nazionalità. Dati di analisi metabolica, ottenuti tramite Magnetic Resonance Spectroscopy (MRS) su campioni di urina, sono disponibili per circa mille anziani (provenienti da cinque paesi europei) di età compresa tra i 65 ed i 79 anni, non affetti da patologie gravi. I dati di composizione corporea sono altresì presenti per questi soggetti. L'algoritmo di Non-negative Matrix Factorization (NMF) è stato utilizzato per esprimere gli spettri MRS come combinazione di fattori di base interpretabili come singoli metaboliti. I fattori trovati sono stabili, quindi spettri metabolici di soggetti sono composti dallo stesso pattern di metaboliti indipendentemente dalla nazionalità. Attraverso un'analisi a singolo cieco sono stati trovati alti valori di correlazione tra le variabili di composizione corporea e lo stato metabolico dei soggetti. Ciò suggerisce la possibilità di derivare la composizione corporea dei soggetti a partire dal loro stato metabolico.
Resumo:
In multivariate time series analysis, the equal-time cross-correlation is a classic and computationally efficient measure for quantifying linear interrelations between data channels. When the cross-correlation coefficient is estimated using a finite amount of data points, its non-random part may be strongly contaminated by a sizable random contribution, such that no reliable conclusion can be drawn about genuine mutual interdependencies. The random correlations are determined by the signals' frequency content and the amount of data points used. Here, we introduce adjusted correlation matrices that can be employed to disentangle random from non-random contributions to each matrix element independently of the signal frequencies. Extending our previous work these matrices allow analyzing spatial patterns of genuine cross-correlation in multivariate data regardless of confounding influences. The performance is illustrated by example of model systems with known interdependence patterns. Finally, we apply the methods to electroencephalographic (EEG) data with epileptic seizure activity.
Resumo:
We show that to each inner function, there corresponds at least one interpolating Blaschke product whose angular derivatives have precisely the same behavior as the given inner function. We characterize the Blaschke products invertible in the closed algebra H-infinity[(b) over bar : b has finite angular derivative everywhere. We study the most well-known example of a Blaschke product with infinite angular derivative everywhere and show that it is an interpolating Blaschke product. We conclude the paper with a method for constructing thin Blaschke products with infinite angular derivative everywhere.
Resumo:
We show that to each inner function, there corresponds at least one interpolating Blaschke product whose angular derivatives have precisely the same behavior as the given inner function. We characterize the Blaschke products invertible in the closed algebra generated by the algebra of bounded analytic functions and the conjugates of Blaschke products with angular derivative finite everywhere. We study the most well-known example of a Blaschke product with infinite angular derivative everywhere and show that it is an interpolating Blaschke product. We conclude the paper with a method for constructing thin Blaschke products with infinite angular derivative everywhere.
Resumo:
Synaptic strength depresses for low and potentiates for high activation of the postsynaptic neuron. This feature is a key property of the Bienenstock–Cooper–Munro (BCM) synaptic learning rule, which has been shown to maximize the selectivity of the postsynaptic neuron, and thereby offers a possible explanation for experience-dependent cortical plasticity such as orientation selectivity. However, the BCM framework is rate-based and a significant amount of recent work has shown that synaptic plasticity also depends on the precise timing of presynaptic and postsynaptic spikes. Here we consider a triplet model of spike-timing–dependent plasticity (STDP) that depends on the interactions of three precisely timed spikes. Triplet STDP has been shown to describe plasticity experiments that the classical STDP rule, based on pairs of spikes, has failed to capture. In the case of rate-based patterns, we show a tight correspondence between the triplet STDP rule and the BCM rule. We analytically demonstrate the selectivity property of the triplet STDP rule for orthogonal inputs and perform numerical simulations for nonorthogonal inputs. Moreover, in contrast to BCM, we show that triplet STDP can also induce selectivity for input patterns consisting of higher-order spatiotemporal correlations, which exist in natural stimuli and have been measured in the brain. We show that this sensitivity to higher-order correlations can be used to develop direction and speed selectivity.
Resumo:
The analysis of short segments of noise-contaminated, multivariate real world data constitutes a challenge. In this paper we compare several techniques of analysis, which are supposed to correctly extract the amount of genuine cross-correlations from a multivariate data set. In order to test for the quality of their performance we derive time series from a linear test model, which allows the analytical derivation of genuine correlations. We compare the numerical estimates of the four measures with the analytical results for different correlation pattern. In the bivariate case all but one measure performs similarly well. However, in the multivariate case measures based on the eigenvalues of the equal-time cross-correlation matrix do not extract exclusively information about the amount of genuine correlations, but they rather reflect the spatial organization of the correlation pattern. This may lead to failures when interpreting the numerical results as illustrated by an application to three electroencephalographic recordings of three patients suffering from pharmacoresistent epilepsy.
Resumo:
In humans, theta band (5-7 Hz) power typically increases when performing cognitively demanding working memory (WM) tasks, and simultaneous EEG-fMRI recordings have revealed an inverse relationship between theta power and the BOLD (blood oxygen level dependent) signal in the default mode network during WM. However, synchronization also plays a fundamental role in cognitive processing, and the level of theta and higher frequency band synchronization is modulated during WM. Yet, little is known about the link between BOLD, EEG power, and EEG synchronization during WM, and how these measures develop with human brain maturation or relate to behavioral changes. We examined EEG-BOLD signal correlations from 18 young adults and 15 school-aged children for age-dependent effects during a load-modulated Sternberg WM task. Frontal load (in-)dependent EEG theta power was significantly enhanced in children compared to adults, while adults showed stronger fMRI load effects. Children demonstrated a stronger negative correlation between global theta power and the BOLD signal in the default mode network relative to adults. Therefore, we conclude that theta power mediates the suppression of a task-irrelevant network. We further conclude that children suppress this network even more than adults, probably from an increased level of task-preparedness to compensate for not fully mature cognitive functions, reflected in lower response accuracy and increased reaction time. In contrast to power, correlations between instantaneous theta global field synchronization and the BOLD signal were exclusively positive in both age groups but only significant in adults in the frontal-parietal and posterior cingulate cortices. Furthermore, theta synchronization was weaker in children and was--in contrast to EEG power--positively correlated with response accuracy in both age groups. In summary we conclude that theta EEG-BOLD signal correlations differ between spectral power and synchronization and that these opposite correlations with different distributions undergo similar and significant neuronal developments with brain maturation.