983 resultados para PCR detection
Resumo:
We have developed a novel allele-specific primer elongation protocol using a DNA polymerase on oligonucleotide chips. Oligonucleotide primers carrying polymorphic sites at their free 3́end were covalently bound to glass slides. The generation of single-stranded targets of genomic DNA containing single nuclotide polymorphisms (SNPs) to be typed was achieved by an asymmetric PCR reaction or exonuclease treatment of phosphothioate (PTO)-modified PCR products. In the presence of DNA polymerase and all four dNTPs, with Cy3-dUTP replacing dTTP, allele-specific extension of the immobilized primers took place along a stretch of target DNA sequence. The yield of elongated products was increased by repeated reaction cycles. We performed multiplexed assays with many small DNA targets, or used single targets of up to 4.4 kb mitochondrial DNA (mtDNA) sequence to detect multiple SNPs in one reaction. The latter approach greatly simplifies preamplification of SNP-containing regions, thereby providing a framework for typing hundreds of mtDNA polymorphisms.
Resumo:
A method was developed to detect 5' ends of bacterial RNAs expressed at low levels and to differentiate newly initiated transcripts from processed transcripts produced in vivo. The procedure involves use of RNA ligase to link a specific oligoribonucleotide to the 5' ends of cellular RNAs, followed by production of cDNA and amplification of the gene of interest by PCR. The method was used to identify the precise sites of transcription initiation within a 10-kb region of the pheromone-inducible conjugative plasmid pCF10 of Enterococcus faecalis. Results confirmed the 5' end of a very abundant, constitutively produced transcript (from prgQ) that had been mapped previously by primer extension and defined the initiation point of a less abundant, divergently transcribed message (from prgX). The method also showed that the 5' end of a pheromone-inducible transcript (prgB) that had been mapped by primer extension was generated by processing rather than new initiation. In addition, the results provided evidence for two promoters, 3 and 5 kb upstream of prgB, and indicated that only the transcripts originating 5 kb upstream may be capable of extending to prgB.
Resumo:
We describe molecular and clinical findings in an immunocompetent patient with an oligoastrocytoma and the concomitant presence of the human papovavirus, JC virus (JCV), which is the etiologic agent of the subacute, debilitating demyelinating disease, progressive multifocal leukoencephalopathy. Histologic review revealed a glial neoplasm consisting primarily of a moderately cellular oligodendroglioma with distinct areas of a fibrillary astrocytoma. Immunohistochemical analysis revealed nuclear staining of tumor cells with antibodies against the viral oncoprotein [tumor antigen (T antigen)], the proliferation marker (Ki67), and the cellular proliferation regulator (p53). Using primers specific to the JCV control region, PCR yielded amplified DNA that was identical to the control region of the Mad-4 strain of the virus. PCR analysis demonstrated the presence of the genome for the viral oncoprotein, T antigen, and results from primer extension studies revealed synthesis of the viral early RNA for T antigen in the tumor tissues. The presence of viral T antigen in the tumor tissue was further demonstrated by immunoblot assay. To our knowledge, this is the first report of the presence of JCV DNA, RNA, and T antigen in tissue in which viral T antigen is localized to tumor cell nuclei and suggests the possible association of JCV with some glial neoplasms.
Resumo:
Detection of loss of heterozygosity (LOH) by comparison of normal and tumor genotypes using PCR-based microsatellite loci provides considerable advantages over traditional Southern blotting-based approaches. However, current methodologies are limited by several factors, including the numbers of loci that can be evaluated for LOH in a single experiment, the discrimination of true alleles versus "stutter bands," and the use of radionucleotides in detecting PCR products. Here we describe methods for high throughput simultaneous assessment of LOH at multiple loci in human tumors; these methods rely on the detection of amplified microsatellite loci by fluorescence-based DNA sequencing technology. Data generated by this approach are processed by several computer software programs that enable the automated linear quantitation and calculation of allelic ratios, allowing rapid ascertainment of LOH. As a test of this approach, genotypes at a series of loci on chromosome 4 were determined for 58 carcinomas of the uterine cervix. The results underscore the efficacy, sensitivity, and remarkable reproducibility of this approach to LOH detection and provide subchromosomal localization of two regions of chromosome 4 commonly altered in cervical tumors.
Resumo:
Escherichia coli methyl-directed mismatch repair is initiated by MutS-, MutL-, and ATP-dependent activation of MutH endonuclease, which cleaves at d(GATC) sites in the vicinity of a mismatch. This reaction provides an efficient method for detection of mismatches in heteroduplexes produced by hybridization of genetically distinct sequences after PCR amplification. Multiple examples of transition and transversion mutations, as well as one, two, and three nucleotide insertion/deletion mutants, have been detected in PCR heteroduplexes ranging in size from 400 bp to 2.5 kb. Background cleavage of homoduplexes is largely due to polymerase errors that occur during amplification, and the MutHLS reaction provides an estimate of the incidence of mutant sequences that arise during PCR.
Resumo:
Aim of study. Orchidaceae has the largest number of species of any family in the plant kingdom. This family is subject to a high risk of extinction in natural environments, such as natural parks and protected areas. Recent studies have shown the prevalence of many species of orchids to be linked to fungal soil diversity, due to their myco-heterotrophic behaviour. Plant communities determine fungal soil diversity, and both generate optimal conditions for orchid development. Area of study. The work was carried out in n the two most important natural parks in Alicante (Font Roja and Sierra Mariola), in South-eastern of Spain. Material and Methods. We designed a molecular tool to monitor the presence of Russula spp. in soil and orchids roots, combined with phytosociological methods. Main results. Using a PCR-based method, we detected the presence in the soil and Limodorum abortivum orchid roots of the mycorrhizal fungi Russula spp. The species with highest coverage was Quercus rotundifolia in areas where the orchid was present. Research highlights. We present a useful tool based on PCR to detect the presence of Russula spp. in a natural environment. These results are consistent with those obtained in different studies that linked the presence of the mycorrhizal fungi Russula spp. in roots of the species Limodorum and the interaction between these fungal species and Quercus ilex trees in Mediterranean forest environments.
Resumo:
Resistance to antibiotics used against Neisseria gonorrhoeae infections is a major public health concern. Antimicrobial resistance (AMR) testing relies on time-consuming culture-based methods. Development of rapid molecular tests for detecting AMR determinants could provide valuable tools for surveillance, epidemiological studies and to inform individual case management. We developed a fast (<1.5 hrs) SYBR-green based real-time PCR method with high resolution melting (HRM) analysis. One triplex and three duplex reactions included two sequences for N. gonorrhoeae identification and seven determinants of resistance to extended-spectrum cephalosporins (ESCs), azithromycin, ciprofloxacin, and spectinomycin. The method was validated by testing 39 previously fully-characterized N. gonorrhoeae strains, 19 commensal Neisseria spp., and an additional panel of 193 gonococcal isolates. Results were compared with culture-based AMR determination. The assay correctly identified N. gonorrhoeae and the presence or absence of the seven AMR determinants. There was some cross-reactivity with non-gonococcal Neisseria species and the detection limit was 10(3)-10(4) gDNA copies/reaction. Overall, the platform accurately detected resistance to ciprofloxacin (sensitivity and specificity, 100%), ceftriaxone (sensitivity 100%, specificity 90%), cefixime (sensitivity 92%, specificity 94%), azithromycin and spectinomycin (both sensitivity and specificity, 100%). In conclusion, our methodology accurately detects mutations generating resistance to antibiotics used to treat gonorrhea. Low assay sensitivity prevents direct diagnostic testing of clinical specimens but this method can be used to screen collections of gonococcal isolates for AMR more quickly than with current culture-based AMR testing.
Resumo:
Use of PCR in the field of molecular diagnostics has increased to the point where it is now accepted as the standard method for detecting nucleic acids from a number of sample and microbial types. However, conventional PCR was already an essential tool in the research laboratory. Real-time PCR has catalysed wider acceptance of PCR because it is more rapid, sensitive and reproducible, while the risk of carryover contamination is minimised. There is an increasing number of chemistries which are used to detect PCR products as they accumulate within a closed reaction vessel during real-time PCR. These include the non-specific DNA-binding fluorophores and the specific, fluorophore-labelled oligonucleotide probes, some of which will be discussed in detail. It is not only the technology that has changed with the introduction of real-time PCR. Accompanying changes have occurred in the traditional terminology of PCR, and these changes will be highlighted as they occur. Factors that have restricted the development of multiplex real-time PCR, as well as the role of real-time PCR in the quantitation and genotyping of the microbial causes of infectious disease, will also be discussed. Because the amplification hardware and the fluorogenic detection chemistries have evolved rapidly, this review aims to update the scientist on the current state of the art. Additionally, the advantages, limitations and general background of real-time PCR technology will be reviewed in the context of the microbiology laboratory.
Resumo:
Aim: The aim of this study was to assess the discriminatory power and potential turn around time ( TAT) of a PCR-based method for the detection of methicillin-resistant Staphylococcus aureus (MRSA) from screening swabs. Methods: Screening swabs were examined using the current laboratory protocol of direct culture on mannitol salt agar supplemented with oxacillin (MSAO-direct). The PCR method involved pre-incubation in broth for 4 hours followed by a multiplex PCR with primers directed to mecA and nuc genes of MRSA. The reference standard was determined by pre-incubation in broth for 4 hours followed by culture on MSAO (MSAO-broth). Results: A total of 256 swabs was analysed. The rates of detection of MRSA using MSAO-direct, MSAO-broth and PCR were 10.2, 13.3 and 10.2%, respectively. For PCR, the sensitivity, specificity, positive predictive value and negative predictive values were 66.7% (95% CI 51.9 - 83.3%), 98.6% ( 95% CI 97.1 - 100%), 84.6% ( 95% CI 76.2 - 100%) and 95.2% ( 95% CI 92.4 - 98.0%), respectively, and these results were almost identical to those obtained from MSAO-direct. The agreement between MSAO-direct and PCR was 61.5% ( 95% CI 42.8 - 80.2%) for positive results, 95.6% ( 95% CI 93.0 - 98.2%) for negative results and overall was 92.2% ( 95% CI 88.9 - 95.5%). Conclusions: ( 1) The discriminatory power of PCR and MSAO-direct is similar but the level of agreement, especially for true positive results, is low. ( 2) The potential TAT for the PCR method provides a marked advantage over conventional methods. ( 3) Further modifications to the PCR method such as increased broth incubation time, use of selective broth and adaptation to real-time PCR may lead to improvement in sensitivity and TAT.
Resumo:
Polymerase chain reaction (PCR) is now recognized as a sensitive and specific method for detecting Plasmodium species in blood. In this Study. we tested 279 blood samples, from patients with Suspected malaria, by a PCR assay utilizing species-specific colorimetric detection. and compared the results to light microscopy. Overall, both assays were in agreement for 270 of the 279 specimens. P. vivax was detected in 131 (47.0%) specimens. P. falciparum in 64 (22.9%) specimens, P. ovale in 6 (2.1%) specimens, and P. malariae in 5 (1.8%) specimens. Both P. falciparum and P. vivax were detected in a further 10 (3.6%) specimens, and 54 (19.3%) specimens were negative by both assays. In the remaining nine specimens, microscopy either failed to detect the parasite or incorrectly identified the species present. In summary, the sensitivity, specificity and simplicity of the PCR assay makes it particularly suitable for use in a diagnostic laboratory. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Since the role of respiratory viruses in lung exacerbations of patients with cystic fibrosis has been hampered by the difficulty of detecting viruses in viscous sputum specimens, a multiplex reverse transcriptase PCR (RT-PCR) assay combined with colorimetric amplicon detection was tested for the identification of seven common respiratory viruses in the sputa of cystic fibrosis patients. Of 52 sputa from 38 patients, 12 (23%) samples from 12 patients were positive for a respiratory virus (4 for influenza B, 3 for parainfluenza 1, 3 for influenza A and 2 for respiratory syncytial virus). These results suggest that the RT-PCR method carried out on sputum may provide a convenient means of investigating the role of virus infection in lung exacerbations of cystic fibrosis patients.
Resumo:
The Roche Cobas Amplicor system is widely used for the detection of Neisseria gonorrhoeae but is known to cross react with some commensal Neisseria spp. Therefore, a confirmatory test is required. The most common target for confirmatory tests is the cppB gene of N. gonorrhoeae. However, the cppB gene is also present in other Neisseria spp. and is absent in some N. gonorrhoeae isolates. As a result, laboratories targeting this gene run the risk of obtaining both false-positive and false-negative results. In the study presented here, a newly developed N. gonorrhoeae LightCycler assay (NGpapLC) targeting the N. gonorrhoeae porA pseudogene was tested. The NGpapLC assay was used to test 282 clinical samples, and the results were compared to those obtained using a testing algorithm combining the Cobas Amplicor System (Roche Diagnostics, Sydney, Australia) and an in-house LightCycler assay targeting the cppB gene (cppB-LC). In addition, the specificity of the NGpapLC assay was investigated by testing a broad panel of bacteria including isolates of several Neisseria spp. The NGpapLC assay proved to have comparable clinical sensitivity to the cppB-LC assay. In addition; testing of the bacterial panel showed the NGpapLC assay to be highly specific for N. gonorrhoeae DNA. The results of this study show the NGpapLC assay is a suitable alternative to the cppB-LC assay for confirmation of N. gonorrhoeae-positive results obtained with Cobas Amplicor.
Resumo:
Molecular tools for the species-specific detection of Gluconacetobacter sacchari, Gluconacetobacter diazotrophicus, and Gluconacetobacter liquefaciens from the pink sugarcane mealybug (PSMB) Saccharicoccus sacchari Cockerell (Homiptera: Pseudococcidae) were developed and used in polymerase chain reactions (PCR) and in fluorescence in situ hybridizations (FISH) to better understand the microbial diversity and the numerical significance of the acetic acid bacteria in the PSMB microenvironment. The presence of these species in the PSMB occurred over a wide range of sites, but not in all sites in sugarcane-growing areas of Queensland, Australia, and was variable over time. Molecular probes for use in FISH were also designed for the three acetic acid bacterial species, and shown to be specific only for the target species. Use of these probes in FISH of squashed whole mealybugs indicated that these acetic acid bacteria species represent only a small proportion of the microbial population of the PSMB. Despite the detection of Glac. sacchari, Glac. diazotrophicus, and Glac. liquefaciens by PCR from different mealybugs isolated at various times and from various sugarcane-growing areas in Queensland, Australia, these bacteria do not appear to be significant commensals in the PSMB environment.
Resumo:
Background: This paper describes SeqDoC, a simple, web-based tool to carry out direct comparison of ABI sequence chromatograms. This allows the rapid identification of single nucleotide polymorphisms (SNPs) and point mutations without the need to install or learn more complicated analysis software. Results: SeqDoC produces a subtracted trace showing differences between a reference and test chromatogram, and is optimised to emphasise those characteristic of single base changes. It automatically aligns sequences, and produces straightforward graphical output. The use of direct comparison of the sequence chromatograms means that artefacts introduced by automatic base-calling software are avoided. Homozygous and heterozygous substitutions and insertion/deletion events are all readily identified. SeqDoC successfully highlights nucleotide changes missed by the Staden package 'tracediff' program. Conclusion: SeqDoC is ideal for small-scale SNP identification, for identification of changes in random mutagenesis screens, and for verification of PCR amplification fidelity. Differences are highlighted, not interpreted, allowing the investigator to make the ultimate decision on the nature of the change.
Resumo:
A 5'-nuclease real-time reverse transcriptase-polymerase chain reaction assay was developed for the detection of influenza type A and was validated using a range of influenza A subtypes, including avian strains, and 126 nasopharyngeal aspirate samples. The results show the assay is suitable for screening for influenza A infections, particularly in regions where avian strains may be circulating. (c) 2005 Elsevier Inc. All rights reserved.