760 resultados para PACIFIC SALMON
Resumo:
Pliocene and Miocene magnetostratigraphy from ODP Site 1218 (Equatorial Pacific) has been obtained by measurements made on u-channel samples, augmented by about 50 discrete samples. U-channel samples were measured at 1 cm intervals and stepwise demagnetized in alternating fields up to a maximum peak field of 80 mT. The component magnetization directions were determined by principal component analysis for demagnetization steps in the 20-60 mT peak field range. A relatively small number of discrete samples were subject to both thermal and alternating field (AF) demagnetization and gave results compatible with u-channel measurements. Magnetostratigraphy from u-channel samples are compared with shipboard data that were based on blanket demagnetization at peak AF fields of 20 mT. U-channel measurements add more detail to the magnetostratigraphic record and allow identification of thin polarity zones especially in the upper part of the section were the sedimentation rates are very low (~2 m/Myr). The component magnetization directions determined from u-channel measurements also gave more reliable and precise estimates of inclination (paleolatitude). The magnetostratigraphy from Site 1218 can be unambiguously correlated with the reference geomagnetic polarity time scale and gives a means of dating the sedimentary sequence. Both Miocene-Pliocene and Oligocene-Miocene stage boundaries were easily identified from the magnetostratigraphic record. Although calculation of paleomagnetic poles is hindered by the low precision of the cores' azimuthal orientation, the data from both u-channel and discrete samples allow determination of the paleolatitude of the Site through time with good precision. Paleomagnetic data indicate that the paleolatitude of Site 1218 has increased form nearly equatorial latitude in the Oligocene to its present-day latitude close to 9°N. Within the precision of the paleomagnetic data, this is in agreement with current predictions of plate motion models based on fixed hotspots.
Resumo:
Most species of Late Cretaceous deep-sea benthic foraminifera are believed to be cosmopolitan and therefore to exhibit only minor biogeographical differences. In this preliminary report, six Deep Sea Drilling Project (DSDP) sites from different oceans, paleolatitudes, and paleodepths were analyzed for terminal Cretaceous abyssal-bathyal benthic foraminifera in order to investigate their assumed cosmopolitan distribution and the question of whether different faunal compositions are related to time, different paleolatitudes, and/or different paleodepths. The material studied was obtained from the low-latitude Site 465 (Pacific Ocean), and the intermediate-latitude Sites 384 (North Atlantic) and 356, 516, 525, and 527 (South Atlantic). The material analyzed represents a time slice encompassing the last 20-50 k.y. of the Cretaceous. The faunas contain numerous "Velasco-type" species, such as Gavelinella beccariiformis (White), Cibicidoides velascoensis (Cushman), Nuttallides truempyi (Nuttall), Gaudryina pyramidata Cushman, and various gyroidinoids and buliminids. The results contradict the general assumption of the cosmopolitan nature of Late Cretaceous deep-sea benthic foraminifera advocated in the literature. Only about 9% of the taxa identified were found to be truly "cosmopolitan" through their occurrence at all the sites analyzed. On the basis of correspondence analysis and relative abundance data, three assemblages and three subassemblages were recognized: (1) a bathyal-abyssal assemblage [Nuttallinella sp. A, Cibicidoides hyphalus (Fisher), Valvalabamina sp. evolute form, and Gyroidinoides spp.] at the South Atlantic Sites 356, 516, 525, and 527, divided into three subassemblages, namely (a) a middle bathyal subassemblage [Eouvigerina subsculptura McNeil and Caldwell, Truaxia aspera (Cushman), and G. pyramidata] at Sites 516 and 525, (b) a lower bathyal subassemblage [Osangularia? sp., Pyramidina rudita (Cushman and Parker), and Quadrimorphina camerata (Brotzen)] at Site 356, and (c) an abyssal subassemblage [Gyroidinoides sp. C, Hyperammina-Bathysiphon, Gyroidinoides beisseli (White), and Globorotalites sp. B] at Site 527; (2) an abyssal assemblage [Buliminella cf. plana (Cushman and Parker) and Bulimina incisa Cushman] at the North Atlantic Site 384; and (3) a middle bathyal assemblage [Vulvulina sp. A, Osangularia navarroana (Cushman), Alabamina? sp., Bulimina velascoensis (Cushman), Spiroplectammina spp. calcareous forms, and Bulimina trinitatensis Cushman and Jarvis] at the Pacific Site 465.
Resumo:
Organic matter deposited and buried under the seafloor is one of the major carbon sources for microbial life in the deep subsurface of the ocean. In this report, we present a compilation of all available total organic carbon (TOC) and total inorganic carbon (TIC) data for the sites drilled during Ocean Drilling Program (ODP) Leg 201. We include the TOC and TIC data from sites of Deep Sea Drilling (DSDP) Leg 34 and ODP Legs 112 and 138 (Yeats, Hart, et al., 1976, doi:10.2973/dsdp.proc.34.1976; Suess, von Huene, et al., 1988, doi:10.2973/odp.proc.ir.112.1988; Mayer, Pisias, Janecek, et al., 1992, doi:10.2973/odp.proc.ir.138.1992), which were reoccupied during ODP Leg 201. Additional data from Leg 201 shore-based analyses are also included in the compilation.
Resumo:
Typomorphic features of the main morphogenetic types of Fe-Mn nodules from the radiolarian belt have been considered on materials from polygons in the Clarion-Clipperton ore province and in the Central Basin of the Pacific Ocean. By character of surfaces, features of internal structure, mineral and chemical compositions, behavior of trace elements at selective leaching three genetic types of nodules have been divided: predominantly sedimentary, diagenetic, and sedimentary diagenetic. Their formation results from mechanism of growth.
Resumo:
The final phase of the closure of the Panamanian Gateway and the intensification of Northern Hemisphere Glaciation (NHG) both occurred during the Late Pliocene. Glacial-interglacial (G-IG) variations in sea level might, therefore, have had a significant impact on the remaining connections between the East Pacific and the Caribbean. Here, we present combined foraminiferal Mg/Ca and d18O measurements from Ocean Drilling Program (ODP) Site 1241 from the East Pacific and ODP Site 999 from the Caribbean. The studied time interval covers the first three major G-IG Marine Isotope Stages (MIS 95-100, ~2.5 Ma) after the intensification of NHG. Analyses were performed on the planktonic foraminifera Neogloboquadrina dutertrei and Globigerinoides sacculifer, representing water mass properties in the thermocline and the mixed-layer, respectively. Changes in sea water temperature, relative salinity, and water column stratification strongly suggest that the Panamanian Gateway temporarily closed during glacial MIS 98 and 100, as a result of changes in ice volume equivalent to a drop in sea level of 60-90 m. Reconstructed sea surface temperatures (SST) from G. sacculifer show a glacial decrease of 2.5°C at Site 1241, but increases of up to 3°C at Site 999 during glacial MIS 98 and 100 suggesting that the Panamanian Gateway closed during these glacial periods. The Mg/Ca-temperatures of N. dutertrei remain relatively stable in the East Pacific, but do show a 3°C warming in the Caribbean at the onset of these glacial periods suggesting that the closing of the gateway also changed the water column stratification. We infer that the glacial closure of the gateway allowed the Western Atlantic Warm Pool to extend into the southern Caribbean, increasing SST (G. sacculifer) and deepening the thermocline (N. dutertrei). Additionally, ice volume appears to have become large enough during MIS 100 to survive the relatively short lasting interglacial MIS 99 so that the gateway remained closed. Towards the end of MIS 98, during MIS 97 and into MIS 96 temperatures on both sides are mostly similar suggesting water masses exchanged again. Additionally, Caribbean variations in SST and d18Owater follow a precession-like cyclicity rather than the obliquity-controlled variations characteristic of the East-Pacific and many other tropical areas, suggesting that regional atmospheric processes related to the trade winds and the Intertropical Convergence Zone (ITCZ) had a dominant impact in the Caribbean.
Resumo:
Hydrothermal deposits of a wide variety of types are being found with increasing frequency on or near actively spreading mid-ocean ridges. However, they also have a potential to occur in other submarine volcanic settings, including island arcs. To follow up indications of mineralization associated with submarine hydrothermal activity in the south-west Pacific island arc, a joint New Zealand Oceanographic Institute/Imperial College research cruise was mounted in May 1981 aboard the RV Tangaroa. During this cruise, over 130 sampling stations were occupied, at one of which were dredged manganese deposits with strong hydrothermal affinities. This is the first report of such deposits from an island arc setting.
Resumo:
High resolution records (ca. 100 kyr) of Os isotope composition (187Os/188Os) in bulk sediments from two tropical Pacific sites (ODP Sites 1218 and 1219) capture the complete Late Eocene 187Os/188Os excursion and confirm that the Late Eocene 187Os/ 188Os minimum, earlier reported by Ravizza and Peucker-Ehrenbrink (2003, doi:10.1016/S0012-821X(03)00137-7), is a global feature. Using the astronomically tuned age models available for these sites, it is suggested that the Late Eocene 187Os/188Os minimum can be placed at 34.5 +/- 0.1 Ma in the marine records. In addition, two other distinct features of the 187Os/188Os excursion that are correlatable among sections are proposed as chemostratigraphic markers which can serve as age control points with a precision of ca. +/-0.1 Myr. We propose a speculative hypothesis that higher cosmic dust flux in the Late Eocene may have contributed to global cooling and Early Oligocene glaciation (Oi-1) by supplying bio-essential trace elements to the oceans and thereby resulting in higher ocean productivity, enhanced burial of organic carbon and draw down of atmospheric CO2. To determine if the hypothesis that enhanced cosmic dust flux in the Late Eocene was a cause for the 187Os/188Os excursion can be tested by using the paired bulk sediment and leachate Os isotope composition; 187Os/188Os were also measured in sediment leachates. Results of analyses of leachates are inconsistent between the south Atlantic and the Pacific sites, and therefore do not yield a robust test of this hypothesis. Comparison of 187Os/188Os records with high resolution benthic foraminiferal delta18O records across the Eocene-Oligocene transition suggests that 187Os flux to the oceans decreased during cooling and ice growth leading to the Oi-1 glaciation, whereas subsequent decay of ice-sheets and deglacial weathering drove seawater 187Os/188Os to higher values. Although the precise timing and magnitude of these changes in weathering fluxes and their effects on the marine 187Os/188Os records are obscured by recovery from the Late Eocene 187Os/188Os excursion, evidence of the global influence of glaciation on supply of Os to the ocean is robust as it has now been documented in both Pacific and Atlantic records.
Resumo:
Strontium isotopic compositions of ichthyoliths (microscopic fish remains) in deep-sea clays recovered from the North Pacific Ocean (ODP holes 885A, 886B, and 886C) are used to provide stratigraphic age control within these otherwise undatable sediments. Age control within the deep-sea clays is crucial for determining changes in sedimentation rates, and for calculating fluxes of chemical and mineral components to the sediments. The Sr isotopic ages are in excellent agreement with independent age datums from above (diatom ooze), below (basalt basement) and within (Cretaceous-Tertiary boundary) the clay deposit. The 87Sr/86Sr ratios of fish teeth from the top of the pelagic clay unit (0.7089891), indicate an Late Miocene age (5.8 Ma), as do radiolarian and diatom biostratigraphic ages in the overlying diatom ooze. The 87Sr/86Sr ratio (0.707887) is consistent with a Cretaceous-Tertiary boundary age, as identified by anomalously high iridium, shocked quartz, and sperules in Hole 886C. The 87Sr/86Sr ratios of pretreated fish teeth from the base of the clay unit are similar to Late Cretaceous seawater (0.707779-0.7075191), consistent with radiometric ages from the underlying basalt of 81 Ma. Calculation of sedimentation rates based on Sr isotopic ages from Hole 886C indicate an average sedimentation rate of 17.7 m/Myr in Unit II (diatom ooze), 0.55 m/Myr in Unit IIIa (pelagic clay), and 0.68 m/Myr in Unit IIIb (distal hydrothermal precipitates). The Sr isotopic ages indicate a period of greatly reduced sedimentation (or possible hiatus) between about 35 and 65 Ma (Eocene-Paleocene), with a linear sedimentation rate of only 0.04 m/Myr The calculated sedimentation rates are generally inversely proportional to cobalt accumulation rates and ichthyolith abundances. However, discrepancies between Sr isotope ages and cobalt accumulation ages of l0-15 Myr are evident, particularly in the middle of the clay unit IIIa (Oligocene-Paleocene).
Resumo:
Under modern conditions only North Pacific Intermediate Water is formed in the northwest Pacific Ocean. This situation might have changed in the past. Recent studies with general circulation models indicate a switch to deep-water formation in the northwest Pacific during Heinrich Stadial 1 (17.5-15.0 ka) of the last glacial termination. Reconstructions of past ventilation changes based on paleoceanographic proxy records are still insufficient to test whether a deglacial mode of deep-water formation in the North Pacific Ocean existed. Here we present deglacial ventilation records based on radiocarbon-derived ventilation ages in combination with epibenthic stable carbon isotopes from the northwest Pacific including the Okhotsk Sea and Bering Sea, the two potential source regions for past North Pacific ventilation changes. Evidence for most rigorous ventilation of the intermediate-depth North Pacific occurred during Heinrich Stadial 1 and the Younger Dryas, simultaneous to significant reductions in Atlantic Meridional Overturning Circulation. Concurrent changes in d13C and ventilation ages point to the Okhotsk Sea as driver of millennial-scale changes in North Pacific Intermediate Water ventilation during the last deglaciation. Our records additionally indicate that changes in the d13C intermediate-water (700-1750 m water depth) signature and radiocarbon-derived ventilation ages are in antiphase to those of the deep North Pacific Ocean (>2100 m water depth) during the last glacial termination. Thus, intermediate- and deep-water masses of the northwest Pacific have a differing ventilation history during the last deglaciation.