881 resultados para Optically pumped
Resumo:
We have used the Two-Degree Field (2dF) instrument on the Anglo-Australian Telescope (AAT) to obtain redshifts of a sample of z < 3 and 18.0 < g < 21.85 quasars selected from Sloan Digital Sky Survey (SDSS) imaging. These data are part of a larger joint programme between the SDSS and 2dF communities to obtain spectra of faint quasars and luminous red galaxies, namely the 2dF-SDSS LRG and QSO (2SLAQ) Survey. We describe the quasar selection algorithm and present the resulting number counts and luminosity function of 5645 quasars in 105.7 deg(2). The bright-end number counts and luminosity functions agree well with determinations from the 2dF QSO Redshift Survey (2QZ) data to g similar to 20.2. However, at the faint end, the 2SLAQ number counts and luminosity functions are steeper (i.e. require more faint quasars) than the final 2QZ results from Croom et al., but are consistent with the preliminary 2QZ results from Boyle et al. Using the functional form adopted for the 2QZ analysis ( a double power law with pure luminosity evolution characterized by a second-order polynomial in redshift), we find a faint-end slope of beta =-1.78 +/- 0.03 if we allow all of the parameters to vary, and beta =-1.45 +/- 0.03 if we allow only the faint-end slope and normalization to vary (holding all other parameters equal to the final 2QZ values). Over the magnitude range covered by the 2SLAQ survey, our maximum-likelihood fit to the data yields 32 per cent more quasars than the final 2QZ parametrization, but is not inconsistent with other g > 21 deep surveys for quasars. The 2SLAQ data exhibit no well-defined 'break' in the number counts or luminosity function, but do clearly flatten with increasing magnitude. Finally, we find that the shape of the quasar luminosity function derived from 2SLAQ is in good agreement with that derived from Type I quasars found in hard X-ray surveys.
Resumo:
We present optical, near-IR, and radio follow-up of 16 Swift bursts, including our discovery of nine afterglows and a redshift determination for three. These observations, supplemented by data from the literature, provide an afterglow recovery rate of 52% in the optical/near-IR, much higher than in previous missions (BeppoSAX, HETE-2, INTEGRAL, and IPN). The optical/near-IR afterglows of Swift events are on average 1.8 mag fainter at t = 12 hr than those of previous missions. The X-ray afterglows are similarly fainter than those of pre-Swift bursts. In the radio the limiting factor is the VLA threshold, and the detection rate for Swift bursts is similar to that for past missions. The redshift distribution of pre-Swift bursts peaked at z similar to 1, whereas the six Swift bursts with measured redshifts are distributed evenly between 0.7 and 3.2. From these results we conclude that ( 1) the pre-Swift distributions were biased in favor of bright events and low-redshift events, ( 2) the higher sensitivity and accurate positions of Swift result in a better representation of the true burst redshift and brightness distributions ( which are higher and dimmer, respectively), and (3) similar to 10% of the bursts are optically dark, as a result of a high redshift and/or dust extinction. We remark that the apparent lack of low-redshift, low-luminosity Swift bursts and the lower event rate than prelaunch estimates ( 90 vs. 150 per year) are the result of a threshold that is similar to that of BATSE. In view of these inferences, afterglow observers may find it advisable to make significant changes in follow-up strategies of Swift events. The faintness of the afterglows means that large telescopes should be employed as soon as the burst is localized. Sensitive observations in RIz and near-IR bands will be needed to discriminate between a typical z similar to 2 burst with modest extinction and a high-redshift event. Radio observations will be profitable for a small fraction (similar to 10%) of events. Finally, we suggest that a search for bright host galaxies in untriggered BAT localizations may increase the chance of finding nearby low-luminosity GRBs.
Resumo:
We show that the quantum decoherence of Forster resonant energy transfer between two optically active molecules can be described by a spin-boson model. This allows us to give quantitative criteria that are necessary for coherent quantum oscillations of excitations between the chromophores. Experimental tests of our results should be possible with flourescent resonant energy transfer (FRET) spectroscopy. Although we focus on the case of protein-pigment complexes our results are also relevant to quantum dots and organic molecules in a dielectric medium. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Phase diagrams of the pseudoternary systems ethyloleate, polyoxyethylene 20 sorbitan mono-oleate/sorbitan monolaurate and propylene glycol with and without butanol as a co-surfactant were prepared. Areas containing optically isotropic, one-phase systems were identified and samples therein designated as droplet, bicontinuous or solution type microemulsions using conductivity, viscosity and self-diffusion NMR. Nanoparticles were prepared by polymerization of selected microemulsions with ethyl-2-cyanoacrylate and the morphology of the particles was investigated. Addition of monomer to all types of microemulsions led to the formation of nanoparticles, which had an average size of 244 +/- 25 nm, an average polydispersity index of 0.15 +/- 0.04 and a zeta-potential of -17 +/- 3 mV. The formation of particles from water-free microemulsions of different types is surprising, particularly considering that polymerization is expected to occur at a water-oil interface by base-catalysed polymerization. It would appear that propylene glycol is sufficiently nucleophilic to initiate the polymerization. The use of water-free microemulsions as templates for the preparation of poly (alkylcyanoacrylate) nanoparticles opens up interesting opportunities for the encapsulation of bioactives which do not have suitable properties for encapsulation on the basis of water-containing microemulsions.
Resumo:
The successful development and optimisation of optically-driven micromachines will be greatly enhanced by the ability to computationally model the optical forces and torques applied to such devices. In principle, this can be done by calculating the light-scattering properties of such devices. However, while fast methods exist for scattering calculations for spheres and axisymmetric particles, optically-driven micromachines will almost always be more geometrically complex. Fortunately, such micromachines will typically possess a high degree of symmetry, typically discrete rotational symmetry. Many current designs for optically-driven micromachines are also mirror-symmetric about a plane. We show how such symmetries can be used to reduce the computational time required by orders of magnitude. Similar improvements are also possible for other highly-symmetric objects such as crystals. We demonstrate the efficacy of such methods by modelling the optical trapping of a cube, and show that even simple shapes can function as optically-driven micromachines.
Resumo:
Many attempts have been made to overcome problems involved in character recognition which have resulted in the manufacture of character reading machines. An investigation into a new approach to character recognition is described. Features for recognition are Fourier coefficients. These are generated optically by convolving characters with periodic gratings. The development of hardware to enable automatic measurement of contrast and position of periodic shadows produced by the convolution is described. Fourier coefficients of character sets were measured, many of which are tabulated. Their analysis revealed that a few low frequency sampling points could be selected to recognise sets of numerals. Limited treatment is given to show the effect of type face variations on the values of coefficients which culminated in the location of six sampling frequencies used as features to recognise numerals in two type fonts. Finally, the construction of two character recognition machines is compared and contrasted. The first is a pilot plant based on a test bed optical Fourier analyser, while the second is a more streamlined machine d(3signed for high speed reading. Reasons to indicate that the latter machine would be the most suitable to adapt for industrial and commercial applications are discussed.
Resumo:
In this paper, we present experimental results for monitoring long distance WDM communication links using a line monitoring system suitable for legacy optically amplified long-haul undersea systems. This monitoring system is based on setting up a simple, passive, low cost high-loss optical loopback circuit at each repeater that provides a connection between the existing anti-directional undersea fibres, and can be used to define fault location. Fault location is achieved by transmitting a short pulse supervisory signal along with the WDM data signals where a portion of the overall signal is attenuated and returned to the transmit terminal by the loopback circuit. A special receiver is used at the terminal to extract the weakly returned supervisory signal where each supervisory signal is received at different times corresponding to different optical repeaters. Therefore, the degradation in any repeater appears on its corresponding supervisory signal level. We use a recirculating loop to simulate a 4600 km fibre link, on which a high-loss loopback supervisory system is implemented. Successful monitoring is accomplished through the production of an appropriate supervisory signal at the terminal that is detected and identified in a satisfactory time period after passing through up to 45 dB attenuation in the loopback circuit. © 2012 Elsevier B.V. All rights reserved.
Resumo:
A new challenge in the field of molecular magnetism is the design of optically and thermally switchable solid state magnetic materials for which various kinds of application may be feasible. Our research activities involve preparative methods, the study of the physical properties and associated mechanisms, as well as the exploration of further possibilities. Particular focus is on heterobimetallic Prussian Blue analogs, such as on RbMn[Fe(CN)6], in which the interplay between the two different adjacent metal ions is crucial for the observation of photo-induced phenomena. Our studies revealed that modification of the preparative conditions lead to differences in structural features that allowed tuning of the magnetic and electron transfer properties of RbxMn[Fe(CN)6]y.zH2O.
Resumo:
This thesis presents a numerical and experimental investigation on applications of ultralong Raman fibre lasers in optical communications, supercontinuum generation and soliton transmission. The research work is divided in four main sections. The first involves the numerical investigation of URFL intra-cavity power and the relative intensity noise transfer evolution along the transmission span. The performance of the URFL is compared with amplification systems of similar complexity. In the case of intracavity power evolution, URFL is compared with a first order Raman amplification system. For the RIN transfer investigation, URFL is compared with a bi-directional dual wavelength pumping system. The RIN transfer function is investigated for several cavity design parameters such as span length, pump distribution and FBG reflectivity. The following section deals with experimental results of URFL cavities. The enhancement of the available spectral bandwidth in the C-band and its spectral flatness are investigated for single and multi-FBGs cavity system. Further work regarding extended URFL cavity in combination with Rayleigh scattering as random distributed feedback produced a laser cavity with dual wavelength outputs independent to each other. The last two sections relate to URFL application in supercontinuum (SC) generation and soliton transmission. URFL becomes an enhancement structure for SC generation. This thesis shows successful experimental results of SC generation using conventional single mode optical fibre and pumped with a continuous wave source. The last section is dedicated to soliton transmission and the study of soliton propagation dynamics. The experimental results of exact soliton transmission over multiple soliton periods using conventional single mode fibre are shown in this thesis. The effect of the input signal, pump distribution, span length and FBGs reflectivity on the soliton propagation dynamics is investigated experimentally and numerically.
Resumo:
This thesis presents results of transmission experiments using optical solitons in a dispersion managed optical fibre recirculating loop. The basic concepts of pulse propagation in optical fibre are introduced before optical solitons and their use in optically amplified fibre systems are discussed. The role of dispersion management in such systems is then considered. The design, operation and limitations of the recirculating loop and soliton sources which were used and the experimental techniques are described before the experimental work is presented. The experimental work covers a number of areas all of which used dispersion management of the transmission line. A novel ultra-long distance propagation scheme which achieved low timing jitter by suppression of the amplifier noise and by working close to the zero dispersion wavelength has been discovered. The use of fibre Bragg gratings as wavelength filters to suppress noise and reduce timing jitter has been investigated. The performance of the fibre grating cornpared favourably with that of a bulk device and was in good agreement with theoretical predictions. The upgrade of existing standard fibre systems to higher bit rates is currently an important issue. The possibility of using solitons with dispersion compensation to allow an increase in data rate of existing standard fibre systems to 10Gbit/s over 5000km has been demonstrated. The applicability of this technique to longer distances, higher bit rates or longer amplifier spans is also investigated by optimisation of the dispersion management scheme. The use of fibre Bragg gratings as the dispersion compensating elements in such standard fibre transmission experiments has been examined and the main problem that these devices currently have, high polarisation mode dispersion, is discussed. The likely future direction of optical communications and what part solitons and dispersion management will play in this development is discussed in the thesis conclusions
Resumo:
This thesis presents several advanced optical techniques that are crucial for improving high capacity transmission systems. The basic theory of optical fibre communications are introduced before optical solitons and their usage in optically amplified fibre systems are discussed. The design, operation, limitations and importance of the recirculating loop are illustrated. The crucial role of dispersion management in the transmission systems is then considered. Two of the most popular dispersion compensation methods - dispersion compensating fibres and fibre Bragg gratings - are emphasised. A tunable dispersion compensator is fabricated using the linear chirped fibre Bragg gratings and a bending rig. Results show that it is capable of compensating not only the second order dispersion, but also higher order dispersion. Stimulated Raman Scattering (SRS) are studied and discussed. Different dispersion maps are performed for all Raman amplified standard fibre link to obtain maximum transmission distances. Raman amplification is used in most of our loop experiments since it improves the optical signal-to-noise ratio (OSNR) and significantly reduces the nonlinear intrachannel effects of the transmission systems. The main body of the experimental work is concerned with nonlinear optical switching using the nonlinear optical loop mirrors (NOLMs). A number of different types of optical loop mirrors are built, tested and implemented in the transmission systems for noise suppression and 2R regeneration. Their results show that for 2R regeneration, NOLM does improve system performance, while NILM degrades system performance due to its sensitivity to the input pulse width, and the NALM built is unstable and therefore affects system performance.
Resumo:
This thesis describes novel developments in the fabrication and understanding of type IA fibre Bragg gratings, the uses of said gratings as optical sensors and the interrogation of optical sensors using tilted fibre Bragg gratings. This thesis presents the most detailed study of type IA gratings performed to date and provides the basis of a dual grating optical sensor capable of independently measuring strain and temperature. Until this work it was not known how to reliably fabricate type IA gratings or how they would react to high ambient temperatures, nor was it known what effect external parameters such as fibre type, dopant levels, inscription laser intensity, or hydrogenation levels would have on the physical properties of the grating. This comprehensive study has yielded answers to all of these unknowns and produced several unexpected uses for type IA gratings, such as the use of the previously unreported strong loss band at 1400nm to locally heat fibres by optical absorption and thereby fabricate optically tuneable gratings which do not affect directly adjacent standard gratings. Blazed fibre Bragg gratings have been studied in detail and used to produce several high quality prototype sensor interrogation systems yielding stability an accuracy values unsurpassed by similar devices reported in literature. An accurate distribution map of light radiated by blazed gratings is shown for the first time and has been studied in respect of polarisation state showing that for certain easily achievable conditions a blazed grating spectrometer may be deemed to be polarisation insensitive. In a novel implementation of the system, it is shown that the dynamic wavelength range of a blazed grating spectrometer may be at least doubled by superimposing blazed gratings.
Resumo:
The underlying work to this thesis focused on the exploitation and investigation of photosensitivity mechanisms in optical fibres and planar waveguides for the fabrication of advanced integrated optical devices for telecoms and sensing applications. One major scope is the improvement of grating fabrication specifications by introducing new writing techniques and the use of advanced characterisation methods for grating testing. For the first time the polarisation control method for advanced grating fabrication has successfully been converted to apodised planar waveguide fabrication and the development of a holographic method for the inscription of chirped gratings at arbitrary wavelength is presented. The latter resulted in the fabrication of gratings for pulse-width suppression and wavelength selection in diode lasers. In co-operation with research partners a number of samples were tested using optical frequency domain and optical low coherence reflectometry for a better insight into the limitations of grating writing techniques. Using a variety of different fabrication methods, custom apodised and chirped fibre Bragg gratings were written for the use as filter elements for multiplexer-demultiplexer devices, as well as for short pulse generation and wavelength selection in telecommunication transmission systems. Long period grating based devices in standard, speciality and tapered fibres are presented, showing great potential for multi-parameter sensing. One particular scope is the development of vectorial curvature and refractive index sensors with potential for medical, chemical and biological sensing. In addition the design of an optically tunable Mach-Zehnder based multiwavelength filter is introduced. The discovery of a Type IA grating type through overexposure of hydrogen loaded standard and Boron-Germanium co-doped fibres strengthened the assumption of UV-photosensitivity being a highly non-linear process. Gratings of this type show a significantly lower thermal sensitivity compared to standard gratings, which makes them useful for sensing applications. An Oxford Lasers copper-vapour laser operating at 255 nm in pulsed mode was used for their inscription, in contrast to previous work using CW-Argon-Ion lasers and contributing to differences in the processes of the photorefractive index change
Resumo:
This thesis contains the results of experimental and numerical simulations of optical transmission systems using dispersion managed transmission techniques. Theoretical background is given on the propagation of pulses in optical fibres before extending the arguments to optical solitons, their applications and uses in communications. Dispersion management for transmission systems is introduced and then a brief explanation of quasi-linear pulse propagation is given. Techniques for performing laboratory transmission experiments are divulged and focus on the construction and operation of a recirculating loop. Laser sources and modulators for 40Gbit/s transmission rates are discussed and techniques for acquiring information from the resultant eye are explained.The operation of optically time division demultiplexing with a nonlinear elecro-absorption modulator is considered and then is replaced by the used of a linear electro-optic modulator and Dispersion unbalanced loop mirror (DILM). The use of nonlinearity as a positive effect for the use of processing and regenerating optical data is approached with an insight into the operation interferometers. Successful experimental results are given for the characterisation of the DILM and 40Gbit/ to l0Gbit/s demultiplexing is demonstrated.Modelling of a terrestrial style system is performed and the methods for computer simulation are discussed. The simulations model single channel 40Gbit/s transmission, 16 x 40Gbit/s WDM transmission and WDM transmission with varying channel separation. Three modulation formats are examined over the single mode fibre span. It is found that the dispersion managed soliton is not suitable for terrestrial style systems and that return-to-zero was the optimum format for the considered system.
Resumo:
The following thesis presents results obtained from both numerical simulation and laboratory experimentation (both of which were carried out by the author). When data is propagated along an optical transmission line some timing irregularities can occur such as timing jitter and phase wander. Traditionally these timing problems would have been corrected by converting the optical signal into the electrical domain and then compensating for the timing irregularity before converting the signal back into the optical domain. However, this thesis posses a potential solution to the problem by remaining completely in the optical domain, eliminating the need for electronics. This is desirable as not only does optical processing reduce the latency effect that their electronic counterpart have, it also holds the possibility of an increase in overall speed. A scheme was proposed which utilises the principle of wavelength conversion to dynamically convert timing irregularities (timing jitter and phase wander) into a change in wavelength (this occurs on a bit-by-bit level and so timing jitter and phase wander can be compensated for simultaneously). This was achieved by optically sampling a linearly chirped, locally generated clock source (the sampling function was achieved using a nonlinear optical loop mirror). The data, now with each bit or code word having a unique wavelength, is then propagated through a dispersion compensation module. The dispersion compensation effectively re-aligns the data in time and so thus, the timing irregularities are removed. The principle of operation was tested using computer simulation before being re-tested in a laboratory environment. A second stage was added to the device to create 3R regeneration. The second stage is used to simply convert the timing suppressed data back into a single wavelength. By controlling the relative timing displacement between stage one and stage two, the wavelength that is finally produced can be controlled.