974 resultados para Operational transconductance amplifier
Resumo:
BACKGROUND HIV-1 RNA viral load (VL) testing is recommended to monitor antiretroviral therapy (ART) but not available in many resource-limited settings. We developed and validated CD4-based risk charts to guide targeted VL testing. METHODS We modeled the probability of virologic failure up to 5 years of ART based on current and baseline CD4 counts, developed decision rules for targeted VL testing of 10%, 20%, or 40% of patients in 7 cohorts of patients starting ART in South Africa, and plotted cutoffs for VL testing on colour-coded risk charts. We assessed the accuracy of risk chart-guided VL testing to detect virologic failure in validation cohorts from South Africa, Zambia, and the Asia-Pacific. RESULTS In total, 31,450 adult patients were included in the derivation and 25,294 patients in the validation cohorts. Positive predictive values increased with the percentage of patients tested: from 79% (10% tested) to 98% (40% tested) in the South African cohort, from 64% to 93% in the Zambian cohort, and from 73% to 96% in the Asia-Pacific cohort. Corresponding increases in sensitivity were from 35% to 68% in South Africa, from 55% to 82% in Zambia, and from 37% to 71% in Asia-Pacific. The area under the receiver operating curve increased from 0.75 to 0.91 in South Africa, from 0.76 to 0.91 in Zambia, and from 0.77 to 0.92 in Asia-Pacific. CONCLUSIONS CD4-based risk charts with optimal cutoffs for targeted VL testing maybe useful to monitor ART in settings where VL capacity is limited.
Resumo:
Laminated glass is a sandwich element consisting of two or more glass sheets, with one or more interlayers of polyvinyl butyral (PVB). The dynamic response of laminated glass beams and plates can be predicted using analytical or numerical models in which the glass and the PVB are usually modelled as linear-elastic and linear viscoelastic materials, respectively. In this work the dynamic behavior of laminated glass beams are predicted using a finite element model and the analytical model of Ross-Kerwin-Ungar. The numerical and analytical results are compared with those obtained by operational modal analysis performed at different temperatures.
Resumo:
In this paper, an interleaved multiphase buck converter with minimum time control strategy for envelope amplifiers in high efficiency RF power amplifiers is proposed. The solution for the envelope amplifier is to combine the proposed converter with a linear regulator in series. High efficiency of envelope amplifier can be obtained through modulating the supply voltage of the linear regulator. Instead of tracking the envelope, the buck converter has discrete output voltage that corresponding to particular duty cycles which achieve total ripple cancellation. The transient model for minimum time control is explained, and the calculation of transient times that are pre-calculated and inserted into a lookup table is presented. The filter design trade-off that limits capability of envelope modulation is also discussed. The experimental results verify the fast voltage transient obtained with a 4-phase buck prototype.
Resumo:
This paper presents a theoretical analysis and an optimization method for envelope amplifier. Highly efficient envelope amplifiers based on a switching converter in parallel or series with a linear regulator have been analyzed and optimized. The results of the optimization process have been shown and these two architectures are compared regarding their complexity and efficiency. The optimization method that is proposed is based on the previous knowledge about the transmitted signal type (OFDM, WCDMA...) and it can be applied to any signal type as long as the envelope probability distribution is known. Finally, it is shown that the analyzed architectures have an inherent efficiency limit.
Resumo:
Classical linear amplifiers such as A, AB and B offer very good linearity suitable for RF power amplifiers. However, its inherent low efficiency limits its use especially in base-stations that manage tens or hundreds of Watts. The use of linearization techniques such as Envelope Elimination and Restoration (EER) allow an increase of efficiency keeping good linearity. This technique requires a very fast dc-dc power converter to provide variable voltage supply to the power amplifier. In this paper, several alternatives are analyzed to implement the envelope amplifier based on a cascade association of a switched dc-dc converter and a linear regulator. A simplified version of this approach is also suitable to operate with Envelope Tracking technique.
Resumo:
Las FPAA´s son dispositivos analógicos programables. Estos dispositivos se basan en el uso de condensadores conmutados junto con amplificadores operacionales. Este tipo de tecnología presenta una serie de ventajas, ya que combinan las ventajas de dispositivos digitales, como la reprogramación en función de las variables del entorno que los rodean, con la diferencia de ser dispositivos analógicos, permitiendo la realización de una amplia gama de diseños analógicos en un solo chip. En este proyecto se ha realizado un estudio sobre el funcionamiento de los condensadores conmutados y su uso en el dispositivo AN221E04 del fabricante Anadigm. Una vez descrita la arquitectura del AN221E04 y explicadas las bases del funcionamiento de los condensadores conmutados, utilizando como ejemplo los modelos facilitados por Anadigm, se desarrolla un modelo de amplificador de instrumentación teórico y se describe la metodología para su implementación en un AN221E04 con el software Anadigm Designer 2. Una vez implementado este modelo de amplificador de instrumentación se han efectuado una serie de pruebas con el objetivo de estudiar la capacidad de estos dispositivos. Dichas pruebas ponen de manifiesto que las FPAA´s tienen una serie de ventajas a tener en cuenta a la hora de realizar diseños analógicos. La precisión obtenida por el modelo de amplificador de instrumentación realizado es más que aceptable, llegando a obtener errores de ganancia inferiores al 1% con ganancias de 200V/V sin tener la necesidad de realizar grandes ajustes. En las conclusiones de este estudio se exponen tanto ventajas como inconvenientes de la utilización de FPAA´s en diseños analógicos. La principal ventaja de este uso es el ahorro de costes, ya que una vez desarrollada una plataforma de diseño, la capacidad de reconfiguración permite utilizar dicha plataforma para un amplio abanico de aplicaciones, reduciendo el número de componentes y simplificando las etapas de diseño. Como desventaja, las FPAA´s tienen una serie de limitaciones qué hay que tener en cuenta en ciertos casos pudiendo hacer irrealizable un diseño concreto; como puede ser el valor máximo o mínimo de ganancia. The FPAA's are programmable analog devices. These devices rely on the use of switched capacitors together with operational amplifiers. This type of technology has a number of advantages, because they combine the advantages of digital devices such as the reprogramming function of the variables of the surrounding environment, with the difference being analog devices, allowing the realization of a wide range of designs analog on a single chip. This project has conducted a study on the operation of the switched capacitor and its use in the device AN221E04 from Anadigm. Having described the architecture of AN221E04 and explained the basis for the operation of the switched capacitor, using the example models provided by Anadigm is developing an instrumentation amplifier theory model and describes the methodology for implementation in a AN221E04 with the Anadigm Designer 2 software. Once implemented this instrumentation amplifier model, have made a series of tests in order to study the ability of these devices. These tests show that the FPAA's have a number of advantages to take into account when making analog designs. The accuracy obtained by the instrumentation amplifier model is made more than acceptable, earning gain errors of less than 1% with gains of 200V / V without the need for major adjustments. The conclusions of this study are presented both advantages and disadvantages of using FPAA's in analog designs. The main advantage of this application is the cost savings, because once developed a platform for design, reconfiguration capability allows you to use this platform for a wide range of applications, reducing component count and simplifying design stages. As a disadvantage, the FPAA's have a number of limitations which must be taken into account in certain cases may make impossible a specific design, such as the maximum or minimum gain, or the magnitude of the possible settings.
Resumo:
This paper presents the Expectation Maximization algorithm (EM) applied to operational modal analysis of structures. The EM algorithm is a general-purpose method for maximum likelihood estimation (MLE) that in this work is used to estimate state space models. As it is well known, the MLE enjoys some optimal properties from a statistical point of view, which make it very attractive in practice. However, the EM algorithm has two main drawbacks: its slow convergence and the dependence of the solution on the initial values used. This paper proposes two different strategies to choose initial values for the EM algorithm when used for operational modal analysis: to begin with the parameters estimated by Stochastic Subspace Identification method (SSI) and to start using random points. The effectiveness of the proposed identification method has been evaluated through numerical simulation and measured vibration data in the context of a benchmark problem. Modal parameters (natural frequencies, damping ratios and mode shapes) of the benchmark structure have been estimated using SSI and the EM algorithm. On the whole, the results show that the application of the EM algorithm starting from the solution given by SSI is very useful to identify the vibration modes of a structure, discarding the spurious modes that appear in high order models and discovering other hidden modes. Similar results are obtained using random starting values, although this strategy allows us to analyze the solution of several starting points what overcome the dependence on the initial values used.
Resumo:
The estimation of modal parameters of a structure from ambient measurements has attracted the attention of many researchers in the last years. The procedure is now well established and the use of state space models, stochastic system identification methods and stabilization diagrams allows to identify the modes of the structure. In this paper the contribution of each identified mode to the measured vibration is discussed. This modal contribution is computed using the Kalman filter and it is an indicator of the importance of the modes. Also the variation of the modal contribution with the order of the model is studied. This analysis suggests selecting the order for the state space model as the order that includes the modes with higher contribution. The order obtained using this method is compared to those obtained using other well known methods, like Akaike criteria for time series or the singular values of the weighted projection matrix in the Stochastic Subspace Identification method. Finally, both simulated and measured vibration data are used to show the practicability of the derived technique. Finally, it is important to remark that the method can be used with any identification method working in the state space model.
Resumo:
Modern transmitters usually have to amplify and transmit signals with simultaneous envelope and phase modulation. Due to this property of the transmitted signal, linear power amplifiers (class A, B, or AB) are usually used as a solution for the power amplifier stage. These amplifiers have high linearity, but suffer from low efficiency when the transmitted signal has high peak-to-average power ratio. The Kahn envelope elimination and restoration technique is used to enhance the efficiency of RF transmitters, by combining highly efficient, nonlinear RF amplifier (class E) with a highly efficient envelope amplifier in order to obtain a linear and highly efficient RF amplifier. This paper presents a solution for the envelope amplifier based on a multilevel converter in series with a linear regulator. The multilevel converter is implemented by employing voltage dividers based on switching capacitors. The implemented envelope amplifier can reproduce any signal with a maximum spectral component of 2 MHz and give instantaneous maximum power of 50 W. The efficiency measurements show that when the signals with low average value are transmitted, the implemented prototypes have up to 20% higher efficiency than linear regulators used as a conventional solution.