974 resultados para Olfactory Lobes
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Agronomia (Entomologia Agrícola) - FCAV
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Contrast enhancement enables the verification of several pathological conditions that lead to vascular changes and/or breakdown of the blood-brain barrier. Examples of diseases that cause these disorders are: neoplastic diseases, vascular communications, active inflammation and cerebral ischemia. Several contrast enhancements located peripherically to cerebral lobes, in the topography of brain sulci and gyri, were identified on tomographic scan of twelve healthy cats that had their health confirmed through history, general and neurologic physical examination and polymerase chain reaction for feline leukemia (FeLV) and immunodeficiency (FIV) virus. This study aims to describe the tomographic contrast enhancement findings, which showed an identical appearance to the pia mater and arachnoid enhancement, also called leptomeninges. This finding is generally considered related to leptomeningeal diseases such as meningitis and neoplastic disease. However, in dogs, the leptomeningeal enhancement has already been described in healthy animals. This finding has a great importance in the interpretation of tomographic images of these animals since, so far, in the presence of these enhancements, meningeal disorders were suggested. Thus, the verification of other tomographic findings and the combination with other diagnostic methods are of great importance for the diagnosis of leptomeningeal disease.
Resumo:
Of the four lacustrine deltaic models, which were found in the Pendência formation, two are represented in the Serraria field. Respectively the deltaic models 1 and 3 shows the reservoir zones A and B. The Zone A is divided into six sub-areas. Each is representing a smaller cycle of development of sigmoidal lobes of deltaic front. Zone B produces in reservoirs of Model 3, or so called Full delta. The Zone B is formed by overlapping the deltaic plain system over the deltaic/prodeltaic front (model 1). This work uses the method of zooming with the aim to contextualize the geometric aspects of the sand bodies, highlighting the analysis of facies and diagenesis with help of pictures and testimonies of thin sections. The sigmoidal lobes of Zone A are fine to very fine sandstones, well sorted, with a arcosian composition.;practically with a weak compaction and cementation of a kind of film of clay (if very fine) and overgrowth feldspar (fine texture). This silicate phases are succeeded by cementation of poiquilotópica calcite, and after this a stage of dissolution, containing only regular permoporosity for this reservoir. Zone B has a combination of two types of deltaic plain reservoir. One is the rarest of distributary channel and the other the most common of lobes of crevasse. In the channel coarse to medium-grained and poor to moderate sorted sandstones are formed (tuning up), and with a lytic arcosiana nature. Rarely there are cements, including growth of feldspar and rhombohedral dolomite, which prevent a high permoporosity of the reservoir. In the crevasse lobes, the sandstones are laminated, fine and well sorted, arkosic, rarely with overgrowth feldspar and calcite poiquilotópica, and with a good intergranular permoporosity
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The discovery of neurogenesis in adult brains opened the possibility of cellular therapy strategies for the treatment of neurodegenerative diseases, such as Alzheimer’s disease. Neurogenesis in the adult brain occurs in two areas: subgranular zone of the hippocampus and subventricular zone (SVZ) of the lateral ventricles. Neurons that originate from the SVZ migrate to the olfactory bulb (OB) through the rostral migratory stream (RMS). In Alzheimer’s disease, there is a progressive neuronal dysfunction and degeneration, resulting in brain atrophy and cognitive impairments including olfactory dysfunction. Several studies have demonstrated that pharmacological treatment with lithium exerts positive effects on adult neurogenesis, and one pathway seems to be the modulation of factors that regulate the migration of neuroblasts. The objective of this study was to investigate whether treatment with lithium promotes the increase of migratory neuroblasts using as parameter the RMS. Adult male C57BL/6 mice were divided into control and lithium-treated groups. The animals were treated for 6 weeks and, at four different time points, i.e., 10 days, 7 days, 3 days and 1 day before the end of treatments, they received an injection of BrdU (cell proliferation marker). The animals were sacrificed by perfusion fixation and the brains were immunohistochemically labeled for BrdU for analysis of migrating neuroblasts in the RMS. The results showed that the number of BrdU+ cells in the RMS was not significantly different between the two groups, suggesting that lithium, alone, is not capable of increasing the number of neuroblasts migrating from the SVZ to the OB