979 resultados para OXIDATIVE ADDITION
Resumo:
Research is progressing fast in the field of the hydrogen assisted hydrocarbon selective catalytic reduction (HC-SCR) over Ag-based catalysts: this paper is a review of the work to date in this area. The addition of hydrogen to the HC-SCR reaction feed over Ag/Al2O3 results in a remarkable improvement in NO (x) conversion using a variety of different hydrocarbon feeds. There is some debate concerning the role that hydrogen has to play in the reaction mechanism and its effect on the form of Ag present during the reaction. Many of the studies use in situ UV-Vis spectroscopy to monitor the form of Ag in the catalyst and appear to indicate that the addition of hydrogen promotes the formation of small Ag clusters which are highly reactive for NO (x) conversion. However, some authors have expressed concern about the use of this technique for these materials and further work is required to address these issues before this technique can be used to give an accurate assessment of the state of Ag during the SCR reaction. A study using in situ EXAFS to probe the H-2 assisted octane-SCR reaction has shown that small Ag particles (containing on average 3 silver atoms) are formed during the SCR reaction but that the addition of H-2 to the feed does not result in any further change in the Ag particle size. This points to the direct involvement of H-2 in the reaction mechanism. Clearly the addition of hydrogen results in a large increase in the number and variety of adsorbed species on the surface of the catalyst during the reaction. Some authors have suggested that conversion of cyanide to isocyanate is the rate-determining step and that hydrogen promotes this conversion. Others have suggested that hydrogen reduces nitrates to more reactive nitrite species which can then activate the hydrocarbon; activation of the hydrocarbon to form acetates has been proposed as the key step. It is probable that all these promotional effects can take place and that it very much depends on the reaction temperature and feed conditions as to which one is most important.
Resumo:
The electrochemical reduction of I atm hydrogen sulfide gas (H2S) has been studied at a platinum microelectrode (10 mu m diameter) in five room temperature ionic liquids (RTILs): [C(2)mim][NTf2], [C(4)mpyrr][NTf2], [C(4)mim][OTf], [C(4)mim][NO3] and [C(4)mim]][PF6] (where [C(n)mim](+) = 1-alkyl-3-methylimidazolium, [NTf2](-) = bis(trifluoromethylsulfonyl)imide, [C(4)mpyrr](+) = N-butyl-N-methylpyrrolidinium, [OTf](-) = trifluoromethlysulfonate, [NO3](-) = nitrate, and [PF6](-) = hexafluorophosphate). In all five RTILs, a chemically irreversible reduction peak was observed on the reductive sweep, followed by one or two oxidative peaks on the reverse scan. The oxidation peaks were assigned to the oxidation of SH- and adsorbed hydrogen. In addition, a small reductive peak was observed prior to the large wave in [C(2)mim]][NTf2] only, which may be due to the reduction of a sulfur impurity in the gas. Potential-step chronoamperometry was carried out on the reduction peak of H2S, revealing diffusion coefficients of 3.2, 4.6, 2.4, 2.7, and 3.1 x 10(-11) m(2) s(-1) and solubilities of 529, 236, 537, 438, and 230 mM in [C(2)mim][NTf2], [C(4)mpyrr][NTf2], [C(4)mim][OTf], [C(4)mim][NO3], and [C(4)mim]][PF6], respectively. The solubilities of H2S in RTILs are much higher than those reported in conventional molecular solvents, suggesting that RTILs may be very favorable gas sensing media for H2S detection.
Resumo:
The structure of the 1-alkyl-3-methylimidazolium salts of the dinuclear mu(4)-(O,O,O',O'-ethane-1,2-dioato)-bis[bis(nitrato-O,O)dioxouranate(VI)] anion have been investigated using single crystal X-ray crystallography. In addition, EXAFS and electrochemical studies have been performed on the [C(4)mim](+) salt which is formed following the oxidative dissolution of uranium(IV) oxide in [C(4)mim][NO3]. EXAFS analysis of the solution following UO2 dissolution indicates a mixture of uranyl nitrate and mu(4)-(O,O,O',O'-ethane-1,2-dioato)-bis[bis(nitrato-O,O)dioxouranate(VI)] anions are formed.
Resumo:
To shed light on stepwise addition reactions in ammonia synthesis, density functional theory calculations are carried out to investigate NHx (x = 1-3) formation on Ru(0001). The reactions on a flat surface are first examined. Transition states and reaction barriers are determined. It is found that the reaction barriers for these stepwise addition reactions are rather high. For example, the barrier for NH hydrogenation is calculated to be 1.28 eV, which is comparable with that of N-2 dissociation. One of the stepwise addition reactions, NH + H --> NH2, on a stepped surface is also considered. Interestingly, the reaction barrier is found to be significantly lower than that on the flat surface, but is considerably higher than that of N-2 dissociation on the same stepped surface. In addition, the coverage effect on the reaction energetics is also addressed. (C) 2001 Published by Elsevier Science B.V.
Resumo:
Catalytic ammonia synthesis is believed to proceed via dissociation of N-2 and H-2 with subsequent stepwise addition reactions from an adsorbed nitrogen atom to NH3. The first step, N-2 dissociation, has been thoroughly studied. However, little is known about the microscopic details of the stepwise addition reactions. To shed light on these stepwise addition reactions, density functional theory calculations with the generalized gradient approximation are employed to investigate NHx (x=1,3) formation on Ru(0001). Transition states and reaction barriers are determined in each elementary step. It is found that the reaction barriers for stepwise addition reactions are rather high, for example, the barrier for NH hydrogenation is calculated to be 1.28 eV, which is comparable with that of N-2 dissociation. In addition, one of the stepwise addition reactions on a stepped surface is also considered. The reaction barrier is found to be much higher than that of N-2 dissociation on the same stepped surface, which indicates the importance of stepwise addition reactions in ammonia synthesis. (C) 2001 American Institute of Physics.
Resumo:
The hydrodechlorination of chlorobenzene over supported palladium catalysts has been studied. The palladium catalysts: deactivate as the reaction proceeds due to the HCl formed as by-product. The effect of the addition of sodium compounds has been analysed for the neutralisation of HCl. When NaOH was added to the reaction mixture, no beneficial effect was observed due to the detrimental effect of the alkaline medium on the textural and metallic properties of the catalysts. Doping the support with NaOH prior to impregnation with the metal precursor leads (after calcination and reduction) to catalysts with better activity and tolerance to deactivation, especially those obtained when using PdCl2 as the metal precursor. Low metal dispersion and the capture of chloride by forming NaCl are the: main factors contributing to the: improved catalytic properties. Finally, doping the catalysts with NaOH or NaNO3, after reduction of the metal precursor leads to a moderate increase in initial activity and final conversion, although NaOH impregnation also gave rise to support corrosion and metal dispersion modification. (C) 2001 Elsevier Science B.V, All rights reserved.
Resumo:
The bystander effect, whereby cells that are not traversed by ionizing radiation exhibit various responses when in proximity to irradiated cells, is well documented in the field of radiation biology, Here we demonstrate that considerable bystander responses are also observed after photodynamic stress using the membrane-localizing dye deuteroporphyrin (DP). Using cells of a WTK1 human lymphoblastoid cell line in suspension and a transwell insert system that precludes contact between targeted and bystander cells, we have shown that the bystander signaling is mediated by diffusing species. The extranuclear localization of the photosensitizer used suggests that primary DNA damage is not the trigger for initiating these bystander responses, which include elevated oxidative stress, DNA damage (micronucleus formation), mutagenesis and decreased clonogenic survival. In addition, oxidative stress in the bystander population was reduced by the presence of the membrane antioxidant vitamin E in the targeted cells, suggesting that lipid peroxidation may play a key role in mediating these bystander effects. The fluence responses for these bystander effects are non-linear, with larger effects seen at lower fluences and toxicity to the target cell population. Hence, when considering outcomes of photodynamic action in cells and tissue, bystander effects may be significant, especially at sublethal fluences.
Resumo:
The effects of such solutes such as halides and water on the physical properties of room temperature ionic liquids (RTILs) have been extensively studied, This work examines the effect of the solute carbon dioxide on the RTIL 1-ethyl-3-methylimidazolium bis(trifluoromethane-sulfonyl)imide ([C(2)mim][NTf2]) and its influence on the electrochemical characterization of the important redox couple ferrocene/ferrocenium (Fc/Fc(+)). The system was studied using cyclic voltammetry, chronoamperometry, and electron spin resonance (ESR) spectroscopy. Addition Of 100% CO2 to a solution of Fc in [C(2)mim][NTf2] resulted in a substantial increase in both the limiting oxidative current and diffusion coefficient of Fc. Arrhenius plots of Fc diffusion coefficients in the pure and CO2-saturated ionic liquid revealed a decrease in activation energy of translational diffusion from 29.0 (+/- 0.5) kJ mol(-1) to 14.7 (+/- 1.6) kJ mol(-1), suggesting a reduction in the viscosity of the ionic liquid with addition Of CO2. ESR spectroscopy was then used to calculate the rotational correlation coefficients of a probe molecule, 2,2,6,6-tetramethyl-1-piperinyloxyl (TEMPO), to add supporting evidence to this hypothesis. Arrhenius plots of rotational correlation coefficients in the pure and CO2-saturated ionic liquid resulted in a similar drop in activation energy from 28.7 (+/- 2.1) kJ mol(-1) to 18.2 (+/- 5.6) kJ mol(-1). The effect of this solute on the ionic liquid [C(2)mim][NTf2] and on the electrochemical measurements of the Fc/Fc(+) couple emphasizes the necessity of fastidious sample preparation, as it is clear that the voltammetric currents of the electroactive species under study are influenced by the presence of CO2 in solution. The voltammetric response of the electroactive species in RTILs cannot be assumed to be independent of other solutes.
Resumo:
Many degenerative diseases are associated with increased oxidative stress. Creatine has the potential to act as an indirect and direct antioxidant; however, limited data exist to evaluate the antioxidant capabdities of creatine supplementation within in vivo human systems. This study aimed to investigate the effects of oral creatine supplementation on markers of oxidative stress and antioxidant defenses following exhaustive cycling exercise. Following preliminary testing and two additional familiarization sessions, 18 active males repeated two exhaustive incremental cycling trials (T1 and T2) separated by exactly 7 days. The subjects were assigned, in a double-blind manner, to receive either 20 g of creatine (Cr) or a placebo (P) for the 5 days preceding T2. Breath-by-breath respiratory data and heart rate were continually recorded throughout the exercise protocol and blood samples were obtained at rest (preexercise), at the end of exercise (postexercise), and the day following exercise (post24 h). Serum hypdroperoxide concentrations were elevated at postexercise by 17 +/- 5% above preexercise values (p = 0.030). However, supplementation did not influence lipid peroxidation (serum hypdroperoxide concentrations), resistance of low density lipoprotein to oxidative stress (t(1/2max) LDL oxidation) and plasma concentrations of non-enzymatic antioxidants (retinol, alpha-carotene, beta-carotene, alpha-tocopherol, gamma-tocopherol, lycopene and vitamin Q. Heart rate and oxygen uptake responses to exercise were not affected by supplementation. These findings suggest that short-term creatine supplementation does not enhance non-enzymatic antioxidant defence or protect against lipid peroxidation induced by exhaustive cycling in healthy males.
Resumo:
Parkinson's disease (PD)-related dementia affects approximately 40% of PD patients and the severity of this dementia correlates significantly with the density of Lewy body (LB) deposition in the PD brain. Aggregated alpha-synuclein protein is the major component of LB's and the non-amyloid component (NAC) region of alpha-synuclein, residues 61-95, is essential for the aggregation and toxicity of this protein. The current study evaluated the effect of pre-aggregated NAC(61-95) injected into the CA3 area of the dorsal hippocampus of the brain on memory in the rat. Previous research has suggested that oxidative stress processes may play a role in the neuropathology of PD, therefore the effect of treatment with vitamin E, an antioxidant, was also evaluated. Male Sprague-Dawley rats were trained in two-lever operant chambers under an alternating-lever cyclic-ratio (ALCR) schedule of food reinforcement. When responding showed no trends, subjects were divided into four groups. Two groups were injected bilaterally into the dorsal hippocampus with aggregated NAC(61-95) (5 mu l suspension), and two groups were injected bilaterally into the dorsal hippocampus with sterile water (5 mu l). Subgroups were treated with either vitamin E (150 mg/kg in Soya oil) or vehicle (Soya oil) daily. Injection of NAC(61-95) induced memory deficits and vitamin E treatment alleviated these. In addition, NAC(61-95) injections induced activated astrocytes and chronic treatment with vitamin E reduced the numbers of activated astrocytes. These results suggest that aggregated NAC(61-95) and associated oxidative stress, may play a role in the pathogenesis of cognitive deficits seen in PD-induced dementia. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Energy intake in 15-20% of the UK older population is currently thought to be inadequate for health. Based on the suggestion that increases in food pleasantness and familiarity can increase intake, this study investigated the impact of the addition of sauce to an older person's meal on subsequent intake. Twenty-eight older people consumed two meals with sauce and the same two meals without sauce on different occasions, and amount consumed in terms of weight, energy and energy consumed from carbohydrate, fat and protein were compared. Pre-meal hunger and desire to eat, post-meal pleasantness and familiarity and participants' expectations of the effects of sauces were also measured. Compared to meals without sauce, meals with sauce were found to result in greater intakes of energy, energy consumed from protein and energy consumed from fat (smallest t(27)=2.13, p=0.04). No differences between conditions were found in measures of pre-meal hunger and desire to eat, or post-meal pleasantness and familiarity (largest t(27) = 1.47, p = 0.15). Similar effects were also found when participant expectations were taken into account, and no differences between participants who expected sauces to affect intake vs. those who did not expect sauces to affect intake were found (largest F(1, 26) = 1.70, p=0.20). These findings suggest that the addition of sauce to an older person's meal can result in increases in intake and may be beneficial for preventing or treating under-nutrition in these individuals, although the mechanisms by which sauces can increase intake are unlikely to be related to pleasantness and familiarity. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Background: Intermedin (IMD), a novel cardiac peptide related to adrenomedullin (AM), protects against myocardial ischemia-reperfusion injury and attenuates ventricular remodelling. IMD’s actions are mediated by a calcitonin receptor-like receptor in association with receptor activity modifying proteins (RAMPs 1-3). Aim/method: using the spontaneously hypertensive rat (SHR) and normotensive Wistar Kyoto (WKY) rat at 20 weeks of age, to examine (i) the presence of myocardial oxidative stress and concentric hypertrophy; (ii) expression of IMD, AM and receptor components. Results: In left and right ventricular cardiomyocytes from SHR vs. WKY cell width (26% left, 15% right) and mRNA expression of hypertrophic markers ANP (2.7 fold left, 2.7 fold right) and BNP (2.2 fold left, 2.0 fold right) were enhanced. In left ventricular cardiomyocytes only (i) oxidative stress was indicated by increased membrane protein carbonyl content (71%) and augmented production of O2- anion (64%); (ii) IMD (6.8 fold), RAMP1 (2.5 fold) and RAMP3 (2.0 fold) mRNA was increased while AM and RAMP2 mRNA was not altered; (iii) abundance of RAMP1 (by 48%), RAMP2 (by 41%) and RAMP3 (by 90%) monomers in cell membranes was decreased. Conclusion: robust augmentation of IMD expression in hypertrophied left ventricular cardiomyocytes indicates a prominent role for this counter-regulatory peptide in the adaptation of the SHR myocardium to the stresses imposed by chronic hypertension. The local concentration and action of IMD may be further enhanced by down-regulation of NEP within the left ventricle.