937 resultados para ORGANOMETALLIC REAGENTS
Resumo:
The syntheses of several ethynyl-gold(I) phosphine substituted tolans (1,2-diaryl acetylenes) of general form [Au(C=CC6H4C=CC6H4X)(PPh3)] are described [X = Me (2a), OMe (2b), CO2Me (2c), NO2 (2d), CN (2e)]. These complexes react readily with [Ru-3(CO) 10(mu-dppm)] to give the heterometallic clusters [Ru3(mu-AuPPh3)(mu-eta(1), eta(2)-C2C6H4C, CC6H4X)(CO)(7)(mu-dppm)] (3a-e). The crystallographically determined molecular structures of 2b, 2d, 2e and 3a-e are reported here, that of 2a having been described on a previous occasion. Structural, spectroscopic and electrochemical studies were conducted and have revealed little electronic interaction between the remote substituent and the organometallic end-caps. (C) 2007 Elsevier B. V. All rights reserved.
Resumo:
Reactions of [Mo(eta(3)-C3H5)Br(CO)(2)(NCMe)(2)] with the bidentate nitrogen ligands 2-(2'-pyridyl)imidazole (L1), 2-(2'-pyridyl)benzimidazole (L2), N,N'-bis(2'-pyridinecarboxamido)-1,2-ethane (L3), and 2,2'-bisimidazole (L4) led to the new complexes [Mo(eta(3)-C3H5)Br(CO)(2)(L)] (L = L1, 1; L2, 2; L4, 4) and [{Mo(eta(3)-C3H5) Br(CO)(2)}(2)(mu-L-3)] (3). The reaction of complexes 2 and 3 with Tl[CF3SO3] afforded [Mo(eta(3)-C3H5)(CF3SO3)(CO)(2)(L2)] (2T) and [{Mo(eta(3)-C3H5)(CF3SO3)(CO)(2)}(2)(mu-L-3)] (3T). Complexes 3 and 2T were structurally characterized by single crystal X-ray diffraction, showing the facial allyl/carbonyls arrangement and the formation of the axial isomer. In 2T, two molecules are assembled in a hydrogen bond dimer. The four complexes 1-4 were tested as precursors in the catalytic epoxidation of cyclooctene and styrene, in the presence of t-butylhydroperoxide (TBHP), with moderate conversions and turnover frequencies for complexes 1-3 and very low ones for 4. The increasing number of N-H groups in the complexes seems to be responsible for the loss of catalytic activity, compared with other related systems. The cytotoxic activities of all the complexes were evaluated against HeLa cells. The results showed that compounds 1,2,4, and 2T exhibited significant activity, complexes 2 and 2T being particularly promising. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
N,O-bis(diphenylphosphinyl)-2-(hydroxymethyl)aziridine ('DiDpp', 1) is efficiently prepared from 2-aminoethane-1,3-diol: this activated aziridine undergoes two sequential reactions with copper(I)-modified Grignard reagents, yielding alpha-branched N-Dpp amines in good yield. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Asymmetric hydrogenation of C=C bonds is of the highest importance in organic synthesis, and such reactions are currently carried out with organometallic homogeneous catalysts. Achieving heterogeneous metal-catalyzed hydrogenation, a highly desirable goal, necessitates forcing the crucial enantiodifferentiating step to take place at the metal surface. By synthesis and application of six chiral sulfide ligands that anchor robustly to Pd nanoparticles and resist displacement, we have for the first time accomplished heterogeneous enantioselective catalytic hydrogenation of isophorone. High resolution XPS data established that ligand adsorption from solution occurred exclusively on the Pd nanoparticles and not on the carbon support. All ligands contained a pyrrolidine nitrogen to enable their interaction with the isophorone substrate while the sulfide functionality provided the required interaction with the Pd surface. Enantioselective turnover numbers of up to similar to 100 product molecules per ligand molecule were found with a very large variation in asymmetric induction between ligands: observed enantiomeric excesses increased with increasing size of the alkyl group in the sulfide. This likely reflects varying degrees of ligand dispersion on the surface: bulky substituent groups hinder close approach of ligand molecules to each other, inhibiting close-packed island formation, favoring dispersion as separate molecules, and leading to effective asymmetric induction. Conversely, small substituents favor island formation leading to very low asymmetric induction. Enantioselective reaction most likely involves initial formation of an enamine or iminium species, confirmed by use of an analogous tertiary amine, which leads to racemic product. Ligand rigidity and resistance to self-assembled monolayer formation are important attributes that should be designed into improved chiral modifiers.
Resumo:
The effects of a new titanocene compound with an ansa ligand in the cyclopentadienyl rings, the 1,2-di(cyclopentadienyl)-1,2-di(p-NNdimethylaminophenyl)-ethanediyl] titanium dichloride (TITANOCENE X), on the growth and differentiation of granulocyte-macrophage progenitor cells [colony-forming unit-granulocyte-macrophage (CFU-GM)] and Natural killer (NK) cell activity in Ehrlich's ascites tumour (EAT)-bearing mice were studied. Myelosuppression concomitant with increased numbers of spleen CFU-GM was observed in tumour-bearing mice. Treatment of these animals with TITANOCENE X (2.5-50mg/kg/day) produced an increase in myelopoicsis, in a dose-dependent manner, and reduced spleen colony formation. In addition, the treatment of EAT-bearing mice with 3 doses of 20 or 50 mg/kg TITANOCENE X restored to normal values the reduced Natural killer cell function observed during tumour growth. In parallel, TITANOCENE X prolonged, in a dose-dependent manner, the survival of mice inoculated with Ehrlich's ascites tumour. The highest dose of 50 mg/kg prolonged in 50% the survival time of EAT-bearing mice, compared to non-treated tumour-bearing controls. In comparison with previous results from our laboratory addressing the effects of titanocenes on haematopoiesis, we observed with TITANOCENE X a similar effective profile as for bis(cyclopentadienyl) dithiocyanate titanium(IV), being both less effective than di(cyclopentadienyl) dichloro titanium(IV), since the latter not only prolonged, but also increased the rate of survival. These differences in efficacy may be due to the nature of the ansa-cyclopentadienyl ligand used in TITANOCENE X, since the C, bridge between the two cyclopentadienyl groups will increase the hydrolytic stability by an organometallic chelate effect. Also, the introduction of two dimethylamino substituents increases the water solubility of TITANOCENE X when compared to titanocene dichloride itself (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Using 6-benzo[1,3]dioxolefulvene (1a), a series of benzodioxole substituted titanocenes was synthesized. The benzyl-substituted titanocene bis[(benzo[1,3]dioxole)-5-methylcyclopentadienyl] titanium (IV) dichloride (2a) was synthesized from the reaction of Super Hydride with 1a. An X-ray determined crystal structure was obtained for 2a. The ansa-titanocene (1,2-di(cyclopentadienyl)1,2-di-(benzo[1,3]dioxole)-ethanediyl) titanium(IV) dichloride (2b) was synthesized by reductive dimerisation of la with titanium dichloride. The diarylmethyl substituted titanocene bis(di(benzo[1,3]dioxole)-S-methylcyclopentadienyl) titanium(IV) dichloride (20 was synthesized by reacting la with the para-lithiated benzodioxole followed by transmetallation with titanium tetrachloride. When titanocenes 2a-c were tested against pig kidney (LLC-PK) cells inhibitory concentrations (IC50) of 2.8 X 10(-4), 1.6 x 10(-4) and 7.6 x 10(-5) m, respectively, were observed. These values represent improved cytotoxicity against LLC-PK, when compared with unsubstituted titanocene dichloride, but are not as impressive as values obtained for titanocenes previously synthesized using the above methods. Copyright (c) 2006 John Wiley & Sons, Ltd.
Resumo:
From the carbolithiation of N,N-dimethylamino fulvene (3a) and different ortho-lithiated heterocycles (furan, thiophene and N-methylpyrrole), the corresponding lithium cyclopentadienide intermediate (4a-c) was formed. These three lithiated intermediates underwent a transmetallation reaction with TiCl4 resulting in dimethylamino-functionalised titanocenes 5a-c. When these titanocenes were tested against LLC-PK cells, the IC50 values obtained were of 240, and 28 mu M for titanocenes 5a and 5b, respectively. The most cytotoxic titanocene 5c with an IC50 value of 5.5 mu M is found to be almost as cytotoxic as cis-platin, which showed an IC50 value of 3.3 mu M, when tested on the LLC-PK cell line, and titanocene 5c is approximately 400 times better than titanocene dichloride itself. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
There are several advantages of using metabolic labeling in quantitative proteomics. The early pooling of samples compared to post-labeling methods eliminates errors from different sample processing, protein extraction and enzymatic digestion. Metabolic labeling is also highly efficient and relatively inexpensive compared to commercial labeling reagents. However, methods for multiplexed quantitation in the MS-domain (or ‘non-isobaric’ methods), suffer from signal dilution at higher degrees of multiplexing, as the MS/MS signal for peptide identification is lower given the same amount of peptide loaded onto the column or injected into the mass spectrometer. This may partly be overcome by mixing the samples at non-uniform ratios, for instance by increasing the fraction of unlabeled proteins. We have developed an algorithm for arbitrary degrees of nonisobaric multiplexing for relative protein abundance measurements. We have used metabolic labeling with different levels of 15N, but the algorithm is in principle applicable to any isotope or combination of isotopes. Ion trap mass spectrometers are fast and suitable for LC-MS/MS and peptide identification. However, they cannot resolve overlapping isotopic envelopes from different peptides, which makes them less suitable for MS-based quantitation. Fourier-transform ion cyclotron resonance (FTICR) mass spectrometry is less suitable for LC-MS/MS, but provides the resolving power required to resolve overlapping isotopic envelopes. We therefore combined ion trap LC-MS/MS for peptide identification with FTICR LC-MS for quantitation using chromatographic alignment. We applied the method in a heat shock study in a plant model system (A. thaliana) and compared the results with gene expression data from similar experiments in literature.
Resumo:
Iron is a pivotal element in organometallic chemistry, enabling fundamental insights with high-impact applications.[1] Ferrocene derivatives have countless uses,[2] and the recent advances in iron catalysis are equally impressive.[3]
Resumo:
A series of half-sandwich bis(phosphine) ruthenium acetylide complexes [Ru(C CAr)(L-2)Cp'] (Ar = phenyl, p-tolyl, 1-naphthyl, 9-anthryl; L2 = (PPh3)(2), Cp' = Cp; L-2 = dppe; Cp' = Cp*) have been examined using electrochemical and spectroelectrochemical methods. One-electron oxidation of these complexes gave the corresponding radical cations [Ru(C CAr)(L2)Cp'](+). Those cations based on Ru(dppe)Cp*, or which feature a para-tolyl acetylide substituent, are more chemically robust than examples featuring the Ru(PPh3)(2)Cp moiety, permitting good quality UV-Vis-NIR and IR spectroscopic data to be obtained using spectroelectrochemical methods. On the basis of TD DFT calculations, the low energy (NIR) absorption bands in the experimental electronic spectra for most of these radical cations are assigned to transitions between the beta-HOSO and beta-LUSO, both of which have appreciable metal d and ethynyl pi character. However, the large contribution from the anthryl moiety to the frontier orbitals of [Ru(C CC14H9)(L2)CP'](+) suggests compounds containing this moiety should be described as metal-stabilised anthryl radical cations.
Resumo:
The ozone-ethene reaction has been investigated at low pressure in a flow-tube interfaced to a u.v. photoelectron spectrometer. Photoelectron spectra recorded as a function of reaction time have been used to estimate partial pressures of the reagents and products, using photoionization cross-sections for selected photoelectron bands of the reagents and products, which have been measured separately. Product yields compare favourably with results of other studies, and the production of oxygen and acetaldehyde have been measured as a function of time for the first time. A reaction scheme developed for the ozone-ethene reaction has been used to simulate the reagents and products as a function of time. The results obtained are in good agreement with the experimental measurements. For each of the observed products, the simulations allow the main reaction (or reactions) for production of that product to be established. The product yields have been used in a global model to estimate their global annual emissions in the atmosphere. Of particular interest are the calculated global annual emissions of formaldehyde (0.96 ± 0.10 Tg) and formic acid, (0.05 ± 0.01 Tg) which are estimated as 0.04% and 0.7% of the total annual emission respectively.
Resumo:
In a study using UV photoelectron spectroscopy (PES) of the atmospherically relevant reaction CH3SCH3 + Cl2 → CH3SCH2Cl + HCl bands associated with a reaction intermediate have been observed. These have been assigned to ionization of the covalently bound molecule (CH3)2SCl2 on the basis of the intensity of the observed bands as a function of reaction time, molecular orbital calculations of vertical ionization energies and evidence from infrared spectroscopy. A method has also been developed, with the flow-tube/PE spectrometer combination used, to measure photoionization cross-sections of the reagents and products at the photon energy utilized and this has allowed the photoionization cross-section of the intermediate to be estimated. This work augments an earlier study in which the rate constant of the reaction between CH3SCH3 (DMS) and Cl2 has been measured at room temperature.
Resumo:
Puff-by-puff resolved gas phase free radicals were measured in mainstream smoke from Kentucky 2R4F reference cigarettes using ESR spectroscopy. Three spin-trapping reagents were evaluated: PBN, DMPO and DEPMPO. Two procedures were used to collect gas phase smoke on a puff-resolved basis: i) the accumulative mode, in which all the gas phase smoke up to a particular puff was bubbled into the trap (i.e., the 5th puff corresponded to the total smoke from the 1st to 5th puffs). In this case, after a specified puff, an aliquot of the spin trap was taken and analysed; or, ii) the individual mode, in which the spin trap was analysed and then replaced after each puff. Spin concentrations were determined by double-integration of the first derivative of the ESR signal. This was compared with the integrals of known standards using the TEMPO free radical. The radicals trapped with PBN were mainly carbon-centred, whilst the oxygen-centred radicals were identified with DMPO and DEPMPO. With each spin trap, the puff-resolved radical concentrations showed a characteristic pattern as a function of the puff number. Based on the spin concentrations, the DMPO and DEPMPO spin traps showed better trapping efficiencies than PBN. The implication for gas phase free radical analysis is that a range of different spin traps should be used to probe complex free radical reactions in cigarette smoke.
Resumo:
Cationic heterobimetallic complexes 5–7 [(PPh3)2Pt(μ-edt)MClCp′)]BF4 (edt=−S(CH2)2S−; 5: M=Rh and Cp′=η5-C5H5; 6: M=Rh and Cp′=η5-C5Me5 and 7: M=Ir and Cp′=η5-C5Me5) were prepared by reaction of [Pt(edt)(PPh3)2] with [Cp′ClM(μ-Cl)2MClCp′] in THF in the presence of two equivalents of AgBF4. The crystalline structure of 5 was determined by X-ray diffraction methods. Cationic heterobimetallic complexes [(PPh3)2Pt(μ-S(CH2)2S)MClCp′)]BF4 (M=Rh, Ir) were prepared. The crystalline structure of [(PPh3)2Pt(μ-edt)RhClCp)]BF4 was determined by X-ray diffraction methods.