1000 resultados para OMXH Small Cap
Resumo:
BACKGROUND: Gefitinib is active in patients with pretreated non-small-cell lung cancer (NSCLC). We evaluated the activity and toxicity of gefitinib first-line treatment in advanced NSCLC followed by chemotherapy at disease progression. PATIENTS AND METHODS: In all, 63 patients with chemotherapy-naive stage IIIB/IV NSCLC received gefitinib 250 mg/day. At disease progression, gefitinib was replaced by cisplatin 80 mg/m(2) on day 1 and gemcitabine 1250 mg/m(2) on days 1, 8 for up to six 3-week cycles. Primary end point was the disease stabilization rate (DSR) after 12 weeks of gefitinib. RESULTS: After 12 weeks of gefitinib, the DSR was 24% and the response rate (RR) was 8%. Median time to progression (TtP) was 2.5 months and median overall survival (OS) 11.5 months. Never smokers (n = 9) had a DSR of 56% and a median OS of 20.2 months; patients with epidermal growth factor receptor (EGFR) mutation (n = 4) had a DSR of 75% and the median OS was not reached after the follow-up of 21.6 months. In all, 41 patients received chemotherapy with an overall RR of 34%, DSR of 71% and median TtP of 6.7 months. CONCLUSIONS: First-line gefitinib monotherapy led to a DSR of 24% at 12 weeks in an unselected patients population. Never smokers and patients with EGFR mutations tend to have a better outcome; hence, further trials in selected patients are warranted.
Resumo:
Atribution as a function of the time are analyzed and this study leads to a deeper knowledge of the microscopic processes involved in the magnetic relaxation
Resumo:
In this article we present a phenomenological model which simulates very well the mag¿ netic relaxation behavior experimentally observed in small magnetic grains and single domain particles. In this model, the occurrence of quantum tunneling of magnetization below a certain temperature is taken into account. Experimental results for different materials are presented to illustrate the most important behavior deduced from our model
Resumo:
Monte Carlo simulations of a model for gamma-Fe2O3 (maghemite) single particle of spherical shape are presented aiming at the elucidation of the specific role played by the finite size and the surface on the anomalous magnetic behavior observed in small particle systems at low temperature. The influence of the finite-size effects on the equilibrium properties of extensive magnitudes, field coolings, and hysteresis loops is studied and compared to the results for periodic boundaries. It is shown that for the smallest sizes the thermal demagnetization of the surface completely dominates the magnetization while the behavior of the core is similar to that of the periodic boundary case, independently of D. The change in shape of the hysteresis loops with D demonstrates that the reversal mode is strongly influenced by the presence of broken links and disorder at the surface
Resumo:
We study the effects of the magnetic field on the relaxation of the magnetization of smallmonodomain noninteracting particles with random orientations and distribution of anisotropyconstants. Starting from a master equation, we build up an expression for the time dependence of themagnetization which takes into account thermal activation only over barriers separating energyminima, which, in our model, can be computed exactly from analytical expressions. Numericalcalculations of the relaxation curves for different distribution widths, and under different magneticfields H and temperatures T, have been performed. We show how a T ln(t/t0) scaling of the curves,at different T and for a given H, can be carried out after proper normalization of the data to theequilibrium magnetization. The resulting master curves are shown to be closely related to what wecall effective energy barrier distributions, which, in our model, can be computed exactly fromanalytical expressions. The concept of effective distribution serves us as a basis for finding a scalingvariable to scale relaxation curves at different H and a given T, thus showing that the fielddependence of energy barriers can be also extracted from relaxation measurements.
Resumo:
The interactions of tiny objects with their environments are dominated by thermal fluctuations. Guided by theory and assisted by new micromanipulation tools, scientists have begun to study such interactions in detail.
Resumo:
The minimal replicon of the Pseudomonas plasmid pVS1 was genetically defined and combined with the Escherichia coli p15A replicon, to provide a series of new, oligocopy cloning vectors (5.3 to 8.3 kb). Recombinant plasmids derived from these vectors were stable in growing and nongrowing cells of root-colonizing P. fluorescens strains incubated under different environmental conditions for more than 1 month.
Resumo:
We present an imaginary-time path-integral study of the problem of quantum decay of a metastable state of a uniaxial magnetic particle placed in the magnetic field at an arbitrary angle. Our findings agree with earlier results of Zaslavskii obtained by mapping the spin Hamiltonian onto a particle Hamiltonian. In the limit of low barrier, weak dependence of the decay rate on the angle is found, except for the field which is almost normal to the anisotropy axis, where the rate is sharply peaked, and for the field approaching the parallel orientation, where the rate rapidly goes to zero. This distinct angular dependence, together with the dependence of the rate on the field strength, provides an independent test for macroscopic spin tunneling.
Resumo:
The paper reports a detailed experimental study on magnetic relaxation of natural horse-spleen ferritin. ac susceptibility measurements performed on three samples of different concentration show that dipole-dipole interactions between uncompensated moments play no significant role. Furthermore, the distribution of relaxation times in these samples has been obtained from a scaling of experimental X" data, obtained at different frequencies. The average uncompensated magnetic moment per protein is compatible with a disordered arrangement of atomic spins throughout the core, rather than with surface disorder. The observed field dependence of the blocking temperature suggests that magnetic relaxation is faster at zero field than at intermediate field values. This is confirmed by the fact that the magnetic viscosity peaks at zero field, too. Using the distribution of relaxation times obtained independently, we show that these results cannot be explained in terms of classical relaxation theory. The most plausible explanation of these results is the existence, near zero field, of resonant magnetic tunneling between magnetic states of opposite orientation, which are thermally populated.
Resumo:
We critically discuss relaxation experiments in magnetic systems that can be characterized in terms of an energy barrier distribution, showing that proper normalization of the relaxation data is needed whenever curves corresponding to different temperatures are to be compared. We show how these normalization factors can be obtained from experimental data by using the Tln (t/t0) scaling method without making any assumptions about the nature of the energy barrier distribution. The validity of the procedure is tested using a ferrofluid of Fe3O4 particles.
Resumo:
The age at which school children begin instruction in the foreign language has been brought forward on two main grounds: (1) young children are better language learners than older children, and (2) bilingualism brings cognitive advantages to children. Both statements are critically analysed in this paper. First of all, recent research findings show that the advantage that younger learners show in a naturalistic language learning situation (or through school immersion) disappears in a formal language learning situation with very limited exposure to the target language. Secondly, the positive effects on cognitive development that have been revealed through research correspond to situations of balanced bilingualism, that is, situations in which children have a high command of the two languages. In contrast, children¿s command of the foreign language in our context is very limited and hence far from the situation of balanced bilingualism (or trilingualism) that is said to bring positive cognitive effects.
Resumo:
More than 60% of neuroendocrine tumours, also called carcinoids, are localised within the gastrointestinal tract. Small bowel neuroendocrine tumours have been diagnosed with increasing frequency over the past 35 years, being the second most frequent tumours of the small intestine. Ileal neuroendocrine tumours diagnosis is late because patients have non-specific symptoms. We have proposed to illustrate as an example the case of a patient, and on its basis, to make a brief review of the literature on small bowel neuroendocrine tumours, resuming several recent changes in the field, concerning classification criteria of these tumours and new recommendations and current advances in diagnosis and treatment. This patient came to our emergency department with a complete bowel obstruction, along with a 2-year history of peristaltic abdominal pain, vomits and diarrhoea episodes. During emergency laparotomy, an ileal stricture was observed, that showed to be a neuroendocrine tumour of the small bowel.