953 resultados para OBSTRUCTIVE LUNG DISEASE
Resumo:
The objective of this study was to estimate the annual direct medical costs of hospitalizations due to osteoporotic fractures in Switzerland. Days of hospital stay in 1992 were quantified using the casuistic of the medical statistics department of VESKA (Vereinigung Schweizerischer Krankenhäuser, the Swiss Hospital Association), which covers 43% of all hospital beds of that country. Number and incidence of total hospitalizations due to fractures were calculated by extrapolating to 100% the 43% VESKA-selected sample. To estimate number and incidence of hospitalizations due to osteoporotic fractures, internationally accepted age-specific osteoporosis attribution rates were applied. According to the latter the probability of a fracture being caused by osteoporosis increases with age. Mean length of stay for all fractures was calculated (= total hospital days divided by number of cases). By multiplying these mean lengths of stay by the number of osteoporosis-related fracture cases, the number of bed-days due to osteoporotic fractures was calculated. To compare the direct medical costs of hospitalization due to osteoporosis with those due to other frequent diseases, days of hospital stay caused by chronic obstructive pulmonary disease (COPD), stroke, acute myocardial infarction and breast cancer were estimated using the same methodology. A total estimate of 63,170 (f: 33,596, m: 29,574) hospitalizations due to fractures (and other osteoporosis-related diagnoses) was calculated, thus leading to overall annual incidence rates of hospitalizations for fractures of 950/100,000 women and 877/100,000 men. In women, 548,615 hospital days were found to be caused by osteoporosis, 353,654 days by COPD, 352,062 days by stroke, 200,669 days by breast carcinoma and 131,331 days by myocardial infarction. In men, COPD caused more hospitalization days (537,164) than myocardial infarction (196,793), stroke (180,524) or osteoporosis (152,857). Taking a mean price for a hospital day in Switzerland of 845 Swiss francs, the annual costs of acute hospitalizations due to osteoporosis and its complications were approximately 600 million Swiss francs (f: 464, m: 130 million Swiss francs) in 1992. We conclude that there is enough economic evidence to justify wide-scale interventions against osteoporosis in Switzerland.
Resumo:
RATIONALE Histologic data from fatal cases suggest that extreme prematurity results in persisting alveolar damage. However, there is new evidence that human alveolarization might continue throughout childhood and could contribute to alveolar repair. OBJECTIVES To examine whether alveolar damage in extreme-preterm survivors persists into late childhood, we compared alveolar dimensions between schoolchildren born term and preterm, using hyperpolarized helium-3 magnetic resonance. METHODS We recruited schoolchildren aged 10-14 years stratified by gestational age at birth (weeks) to four groups: (1) term-born (37-42 wk; n = 61); (2) mild preterm (32-36 wk; n = 21); (3) extreme preterm (<32 wk, not oxygen dependent at 4 wk; n = 19); and (4) extreme preterm with chronic lung disease (<32 wk and oxygen dependent beyond 4 wk; n = 18). We measured lung function using spirometry and plethysmography. Apparent diffusion coefficient, a surrogate for average alveolar dimensions, was measured by helium-3 magnetic resonance. MEASUREMENTS AND MAIN RESULTS The two extreme preterm groups had a lower FEV1 (P = 0.017) compared with term-born and mild preterm children. Apparent diffusion coefficient was 0.092 cm(2)/second (95% confidence interval, 0.089-0.095) in the term group. Corresponding values were 0.096 (0.091-0.101), 0.090 (0085-0.095), and 0.089 (0.083-0.094) in the mild preterm and two extreme preterm groups, respectively, implying comparable alveolar dimensions across all groups. Results did not change after controlling for anthropometric variables and potential confounders. CONCLUSIONS Alveolar size at school age was similar in survivors of extreme prematurity and term-born children. Because extreme preterm birth is associated with deranged alveolar structure in infancy, the most likely explanation for our finding is catch-up alveolarization.
Resumo:
Equine recurrent airway obstruction (RAO) is an inflammatory, obstructive airway disease induced by exposure of susceptible horses to inhaled organic dust particles. The immunological process underlying RAO is still unclear. Previous studies have shown that RAO is linked to the Interleukin-4 receptor (IL-4R) gene in one Warmblood family (F1), but not in another (F2). It has also been shown that in F1, but not in F2, RAO is associated with resistance against parasites, suggesting that this association may have an immuno-genetic basis. Therefore, we hypothesized that the T helper (h)1/Th2/regulatory (Treg) cytokine profiles of RAO-associated antigen- and parasite-antigen-stimulated peripheral blood mononuclear cells (PBMC) differ between RAO-affected and healthy horses depending on their genetic background. In our study, PBMC from 17 RAO-affected and 14 healthy control horses of F1 and F2 were stimulated for 24h with antigens relevant to RAO [hay dust extract (HDE), Aspergillus fumigatus extract (AFE) and lipopolysaccharids (LPS)]; cyathostomin extract (CE) and recombinant cyathostomin antigen (RCA) or with concanavalin A (ConA). Total mRNA levels of IL-4, IL-4R, IL-13, interferon (INF)-γ and IL-10 were examined by qRT-PCR. Stimulation with either HDE or RCA resulted in significant differences in IL-4R mRNA levels between RAO-affected and control horses in F1, but not in F2. For IL-10 mRNA expression, a significant difference between RAO-affected and control horses in F1 but not in F2 was observed only following stimulation with HDE. In contrast to HDE, stimulation with CE resulted in a significant difference of IL-10 mRNA expression level between RAO-affected horses of F2 and healthy horses of F1. No significant differences were detected upon stimulation with any of the other challenge agents. These findings indicate that the immunological response, specifically IL-4R expression, in response to hay dust and cyathostomin antigens, differs between RAO-affected and healthy horses depending on their genetic background. This study shows that analysis of PBMC reveals systemic changes associated with RAO and helps to elucidate immunological pathways involved in this disease.
Resumo:
OBJECTIVES To assess the feasibility of using volumetric capnography in spontaneously breathing small infants and its ability to discriminate between infants with and without bronchopulmonary dysplasia (BPD). STUDY DESIGN Lung function variables for 231 infants (102 term, 52 healthy preterm, 77 BPD), matched for post-conceptional age of 44 weeks, were collected. BPD was defined as supplemental oxygen requirement at 36 weeks post-menstrual age. Tidal breath-by-breath volume capnograms were obtained by mainstream capnography. The capnographic slope of phase II (SII) and slope of phase III (SIII) were calculated and compared between study groups. The effect of BPD, tidal volume (VT), respiratory rate (RR), and prematurity on the magnitude of the slopes was assessed. RESULTS SII was steeper in infants with BPD (100 ± 28/L) compared with healthy preterm (88 ± 22/L; P = .007) and term infants (79 ± 18/L; P < .001), but this finding was attributed to differences in VT, RR, and gestational age. SIII was steeper in the BPD group (26.8 ± 14.1/L) compared with healthy preterm (16.2 ± 6.2/L; P < .001) and term controls (14.8 ± 5.4/L; P < .001). BPD was a significant predictor of SIII independently of VT, RR, and gestational age. The ability of SIII to discriminate between BPD and controls was significantly higher compared with lung clearance index (area under the curve 0.83 vs 0.56; P < .001). CONCLUSIONS Volumetric capnography may provide valuable information regarding functional lung alterations related to BPD and might be considered as an alternative to more involved lung function techniques for monitoring chronic lung disease during early infancy.
Resumo:
OBJECTIVES: To assess health care utilisation for patients co-infected with TB and HIV (TB-HIV), and to develop a weighted health care index (HCI) score based on commonly used interventions and compare it with patient outcome. METHODS: A total of 1061 HIV patients diagnosed with TB in four regions, Central/Northern, Southern and Eastern Europe and Argentina, between January 2004 and December 2006 were enrolled in the TB-HIV study. A weighted HCI score (range 0–5), based on independent prognostic factors identified in multivariable Cox models and the final score, included performance of TB drug susceptibility testing (DST), an initial TB regimen containing a rifamycin, isoniazid and pyrazinamide, and start of combination antiretroviral treatment (cART). RESULTS: The mean HCI score was highest in Central/Northern Europe (3.2, 95%CI 3.1–3.3) and lowest in Eastern Europe (1.6, 95%CI 1.5–1.7). The cumulative probability of death 1 year after TB diagnosis decreased from 39% (95%CI 31–48) among patients with an HCI score of 0, to 9% (95%CI 6–13) among those with a score of ≥4. In an adjusted Cox model, a 1-unit increase in the HCI score was associated with 27% reduced mortality (relative hazard 0.73, 95%CI 0.64–0.84). CONCLUSIONS: Our results suggest that DST, standard anti-tuberculosis treatment and early cART may improve outcome for TB-HIV patients. The proposed HCI score provides a tool for future research and monitoring of the management of TB-HIV patients. The highest HCI score may serve as a benchmark to assess TB-HIV management, encouraging continuous health care improvement.
Resumo:
To systematically investigate putative causes of non-coronary high-sensitive troponin elevations in patients presenting to a tertiary care emergency department. In this cross-sectional analysis, patients who received serial measurements of high-sensitive troponin T between 1 August 2010 and 31 October 2012 at the Department of Emergency Medicine were included. The following putative causes were considered to be associated with non-acute coronary syndrome-related increases in high-sensitive troponin T: acute pulmonary embolism, renal insufficiency, aortic dissection, heart failure, peri-/myocarditis, strenuous exercise, rhabdomyolysis, cardiotoxic chemotherapy, high-frequency ablation therapy, defibrillator shocks, cardiac infiltrative disorders (e.g., amyloidosis), chest trauma, sepsis, shock, exacerbation of chronic obstructive pulmonary disease, and diabetic ketoacidosis. During the study period a total of 1,573 patients received serial measurements of high-sensitive troponin T. Of these, 175 patients were found to have acute coronary syndrome leaving 1,398 patients for inclusion in the study. In 222 (30 %) of patients, no putative cause described in the literature could be attributed to the elevation in high-sensitive troponin T observed. The most commonly encountered mechanism underlying the troponin T elevation was renal insufficiency that was present in 286 patients (57 %), followed by cerebral ischemia in 95 patients (19 %), trauma in 75 patients (15 %) and heart failure in 41 patients (8 %). Non-acute coronary syndrome-associated elevation of high-sensitive troponin T levels is commonly observed in the emergency department. Renal insufficiency and acute cerebral events are the most common conditions associated with high-sensitive troponin T elevation.
Resumo:
Adenosine is a purinergic signaling molecule that regulates various aspects of inflammation and has been implicated in the pathogenesis of chronic lung diseases. Previous studies have demonstrated that adenosine up-regulates IL-6 production through the engagement of the A2B adenosine receptor in various cell types, including alveolar macrophages. IL-6 is elevated in mouse models and humans with chronic lung disease, suggesting a potential role in disease progression. Furthermore, chronic elevation of adenosine in the lungs of adenosine deaminase deficient (Ada-/-) mice leads to the development of pulmonary inflammation, alveolar destruction, and fibrosis, in conjunction with IL-6 elevation. Thus, it was hypothesized that IL-6 contributes to pulmonary inflammation and fibrosis in this model. To test this hypothesis, Ada/IL-6 double knockout mice (Ada/IL-6-/-) were generated to assess the consequences of genetically removing IL-6 on adenosine-dependent pulmonary injury. Ada/IL-6-/- mice exhibited a significant reduction in inflammation, alveolar destruction, and pulmonary fibrosis. Next, Ada-/- mice were treated systematically with IL-6 neutralizing antibodies to test the efficacy of blocking IL-6 on chronic lung disease. These treatments were associated with decreased pulmonary inflammation, alveolar destruction, and fibrosis. To determine the role of IL-6 in a second model of pulmonary fibrosis, wild type mice and IL-6-/- mice were subjected to intraperitoneal injections of bleomycin twice a week for four weeks. Results demonstrated that IL-6-/- mice developed reduced pulmonary fibrosis. To examine a therapeutic approach in this model, wild type mice exposed to bleomycin were treated with IL-6 neutralizing antibodies. Similar results were observed as with Ada-/- mice, namely diminished pulmonary inflammation and fibrosis. In both models, elevations in IL-6 were associated with increased phosphorylated STAT-3 in the nuclei of numerous cell types in the airways, including type II alveolar epithelial cells (AEC). Genetic removal and neutralization of IL-6 in both models was associated with decreased STAT-3 activation in type II AEC. The mechanism of activation in these cells that lack the membrane bound IL-6Ra suggests IL-6 trans-signaling may play a role in regulating fibrosis. Characterization of this mechanism demonstrated that the soluble IL-6Ra (sIL-6Ra) is upregulated in both models during chronic conditions. In vitro studies in MLE-12 alveolar epithelial cells confirmed that IL-6, in combination with the sIL-6Ra, activates STAT-3 and TWIST in association with enhancement of epithelial-to-mesenchymal transition, which can contribute to fibrosis. Similarly, patients with idiopathic pulmonary fibrosis demonstrated a similar pattern of increased IL-6 expression, STAT-3 activation, and sIL-6Ra increases. These findings demonstrate that adenosine-dependent elevations in IL-6 contribute to the development and progression of pulmonary inflammation and fibrosis. The implications from these studies are that adenosine and/or IL-6 neutralizing agents represent novel therapeutic targets for the treatment of pulmonary disorders where fibrosis is a detrimental component.
Resumo:
BACKGROUND: There are differences in the literature regarding outcomes of premature small-for-gestational-age (SGA) and appropriate-for gestational-age (AGA) infants, possibly due to failure to take into account gestational age at birth. OBJECTIVE: To compare mortality and respiratory morbidity of SGA and AGA premature newborn infants. DESIGN/METHODS: A retrospective study was done of the 2,487 infants born without congenital anomalies at RESULTS: Controlling for GA, premature SGA infants were at a higher risk for mortality (Odds ratio 3.1, P = 0.001) and at lower risk of respiratory distress syndrome (OR = 0.71, p = 0.02) than AGA infants. However multivariate logistic regression modeling found that the odds of having respiratory distress syndrome (RDS) varied between SGA and AGA infants by GA. There was no change in RDS risk in SGA infants at GA 32 wk (OR = 0.41, 95% CI 0.27 - 0.63; p < 0.01). After controlling for GA, SGA infants were observed to be at a significantly higher risk for developing chronic lung disease as compared to AGA infants (OR = 2.2, 95% CI = 1.2 - 3.9, P = 0.01). There was no significant difference between SGA and AGA infants in total days on ventilator. Among infants who survived, mean length of hospital stay was significantly higher in SGA infants born between 26-36 wks GA than AGA infants. CONCLUSIONS: Premature SGA infants have significantly higher mortality, significantly higher risk of developing chronic lung disease and longer hospital stay as compared to premature AGA infants. Even the reduced risk of RDS in infants born at >/=32 wk GA, (conferred possibly by intra-uterine stress leading to accelerated lung maturation) appears to be of transient effect and is counterbalanced by adverse effects of poor intrauterine growth on long term pulmonary outcomes such as chronic lung disease.
Resumo:
OBJECTIVE To review systematic reviews and meta-analyses of integrated care programmes in chronically ill patients, with a focus on methodological quality, elements of integration assessed and effects reported. DESIGN Meta-review of systematic reviews and meta-analyses identified in Medline (1946-March 2012), Embase (1980-March 2012), CINHAL (1981-March 2012) and the Cochrane Library of Systematic Reviews (issue 1, 2012). MAIN OUTCOME MEASURES Methodological quality assessed by the 11-item Assessment of Multiple Systematic Reviews (AMSTAR) checklist; elements of integration assessed using a published list of 10 key principles of integration; effects on patient-centred outcomes, process quality, use of healthcare and costs. RESULTS Twenty-seven systematic reviews were identified; conditions included chronic heart failure (CHF; 12 reviews), diabetes mellitus (DM; seven reviews), chronic obstructive pulmonary disease (COPD; seven reviews) and asthma (five reviews). The median number of AMSTAR checklist items met was five: few reviewers searched for unpublished literature or described the primary studies and interventions in detail. Most reviews covered comprehensive services across the care continuum or standardization of care through inter-professional teams, but organizational culture, governance structure or financial management were rarely assessed. A majority of reviews found beneficial effects of integration, including reduced hospital admissions and re-admissions (in CHF and DM), improved adherence to treatment guidelines (DM, COPD and asthma) or quality of life (DM). Few reviews showed reductions in costs. CONCLUSIONS Systematic reviews of integrated care programmes were of mixed quality, assessed only some components of integration of care, and showed consistent benefits for some outcomes but not others.
Resumo:
SETTING Drug resistance threatens tuberculosis (TB) control, particularly among human immunodeficiency virus (HIV) infected persons. OBJECTIVE To describe practices in the prevention and management of drug-resistant TB under antiretroviral therapy (ART) programs in lower-income countries. DESIGN We used online questionnaires to collect program-level data on 47 ART programs in Southern Africa (n = 14), East Africa (n = 8), West Africa (n = 7), Central Africa (n = 5), Latin America (n = 7) and the Asia-Pacific (n = 6 programs) in 2012. Patient-level data were collected on 1002 adult TB patients seen at 40 of the participating ART programs. RESULTS Phenotypic drug susceptibility testing (DST) was available in 36 (77%) ART programs, but was only used for 22% of all TB patients. Molecular DST was available in 33 (70%) programs and was used in 23% of all TB patients. Twenty ART programs (43%) provided directly observed therapy (DOT) during the entire course of treatment, 16 (34%) during the intensive phase only, and 11 (23%) did not follow DOT. Fourteen (30%) ART programs reported no access to second-line anti-tuberculosis regimens; 18 (38%) reported TB drug shortages. CONCLUSIONS Capacity to diagnose and treat drug-resistant TB was limited across ART programs in lower-income countries. DOT was not always implemented and drug supplies were regularly interrupted, which may contribute to the global emergence of drug resistance.
Resumo:
INTRODUCTION Early use of corticosteroids in patients affected by pandemic (H1N1)v influenza A infection, although relatively common, remains controversial. METHODS Prospective, observational, multicenter study from 23 June 2009 through 11 February 2010, reported in the European Society of Intensive Care Medicine (ESICM) H1N1 registry. RESULTS Two hundred twenty patients admitted to an intensive care unit (ICU) with completed outcome data were analyzed. Invasive mechanical ventilation was used in 155 (70.5%). Sixty-seven (30.5%) of the patients died in ICU and 75 (34.1%) whilst in hospital. One hundred twenty-six (57.3%) patients received corticosteroid therapy on admission to ICU. Patients who received corticosteroids were significantly older and were more likely to have coexisting asthma, chronic obstructive pulmonary disease (COPD), and chronic steroid use. These patients receiving corticosteroids had increased likelihood of developing hospital-acquired pneumonia (HAP) [26.2% versus 13.8%, p < 0.05; odds ratio (OR) 2.2, confidence interval (CI) 1.1-4.5]. Patients who received corticosteroids had significantly higher ICU mortality than patients who did not (46.0% versus 18.1%, p < 0.01; OR 3.8, CI 2.1-7.2). Cox regression analysis adjusted for severity and potential confounding factors identified that early use of corticosteroids was not significantly associated with mortality [hazard ratio (HR) 1.3, 95% CI 0.7-2.4, p = 0.4] but was still associated with an increased rate of HAP (OR 2.2, 95% CI 1.0-4.8, p < 0.05). When only patients developing acute respiratory distress syndrome (ARDS) were analyzed, similar results were observed. CONCLUSIONS Early use of corticosteroids in patients affected by pandemic (H1N1)v influenza A infection did not result in better outcomes and was associated with increased risk of superinfections.
Resumo:
Asthma and chronic obstructive airways disease are chronic pulmonary diseases which have a high prevalence world-wide. Both conditions can deteriorate acutely and potentially put patients into life-threatening situations. Management of an acute exacerbation starts in the emergency consultation-setting and ends only once the longterm management has been thoroughly assessed and optimised in order to prevent future exacerbations. Exacerbation frequency is strongly associated with long-term morbidity and mortality in both diseases. Recent data have shown that short-course systemic steroids (5 days) for the treatment of an acute exacerbation of COPD are as successful as long-course treatments (14 days) in preventing exacerbations during the subsequent 6 months. Similarly the targeted use of antibiotics is discussed in this review.
Resumo:
BACKGROUND The lung clearance index (LCI) measured by multiple-breath washout (MBW) has been proposed as an outcome for clinical trials; however, MBW is time consuming and LCI can be affected by breathing pattern. We aimed to evaluate moment ratios and abbreviated LCI in school-aged children with mild-to-moderate CF lung disease. METHODS Using existing data from three studies we assessed the sensitivity of moment ratios and abbreviated LCIs to (i) detect mild-to-moderate CF lung disease and (ii) detect treatment effects after 4weeks of hypertonic saline or dornase alfa inhalation. MBW was measured by respiratory mass spectrometry using 4% "sulphur hexafluoride as a tracer gas. RESULTS Compared to the traditional LCI, moment ratios and abbreviated LCIs were similarly sensitive to detect CF lung disease. Moment ratios consistently demonstrated treatment effects, whereas abbreviated LCIs were less sensitive. CONCLUSIONS Both moment ratios and abbreviated LCI are suitable to differentiate health from disease. Sensitivity is decreased for abbreviated LCIs in interventional studies in mild CF lung disease.
Resumo:
BACKGROUND Low bispectral index values frequently reflect EEG suppression and have been associated with postoperative mortality. This study investigated whether intraoperative EEG suppression was an independent predictor of 90 day postoperative mortality and explored risk factors for EEG suppression. METHODS This observational study included 2662 adults enrolled in the B-Unaware or BAG-RECALL trials. A cohort was defined with >5 cumulative minutes of EEG suppression, and 1:2 propensity-matched to a non-suppressed cohort (≤5 min suppression). We evaluated the association between EEG suppression and mortality using multivariable logistic regression, and examined risk factors for EEG suppression using zero-inflated mixed effects analysis. RESULTS Ninety day postoperative mortality was 3.9% overall, 6.3% in the suppressed cohort, and 3.0% in the non-suppressed cohort {odds ratio (OR) [95% confidence interval (CI)]=2.19 (1.48-3.26)}. After matching and multivariable adjustment, EEG suppression was not associated with mortality [OR (95% CI)=0.83 (0.55-1.25)]; however, the interaction between EEG suppression and mean arterial pressure (MAP) <55 mm Hg was [OR (95% CI)=2.96 (1.34-6.52)]. Risk factors for EEG suppression were older age, number of comorbidities, chronic obstructive pulmonary disease, and higher intraoperative doses of benzodiazepines, opioids, or volatile anaesthetics. EEG suppression was less likely in patients with cancer, preoperative alcohol, opioid or benzodiazepine consumption, and intraoperative nitrous oxide exposure. CONCLUSIONS Although EEG suppression was associated with increasing anaesthetic administration and comorbidities, the hypothesis that intraoperative EEG suppression is a predictor of postoperative mortality was only supported if it was coincident with low MAP. CLINICAL TRIAL REGISTRATION NCT00281489 and NCT00682825.
Resumo:
Particulate matter (PM) pollution is a leading cause of premature death, particularly in those with pre-existing lung disease. A causative link between particle properties and adverse health effects remains unestablished mainly due to complex and variable physico-chemical PM parameters. Controlled laboratory experiments are required. Generating atmospherically realistic Aerosols and performing cell-exposure studies at relevant particle-doses are challenging. Here we examine gasoline-exhaust particle toxicity from a Euro-5 passenger car in a uniquely realistic exposure scenario, combining a smog chamber simulating atmospheric ageing, an aerosol enrichment System varying particle number concentration independent of particle chemistry, and an aerosol Deposition chamber physiologically delivering particles on air-liquid interface (ALI) cultures reproducing normal and susceptible health status. Gasoline-exhaust is an important PM source with largely unknown health effects. We investigated acute responses of fully-differentiated normal, distressed (antibiotics treated) normal, and cystic fibrosis human bronchial epithelia (HBE), and a proliferating, single-cell type bronchial epithelial cell-line (BEAS-2B). We show that a single, short-term exposure to realistic doses of atmospherically-aged gasoline-exhaust particles impairs epithelial key-defence mechanisms, rendering it more vulnerable to subsequent hazards. We establish dose-response curves at realistic particle-concentration levels. Significant differences between cell models suggest the use of fully differentiated HBE is most appropriate in future toxicity studies.