977 resultados para Nurse Competency Scale
Resumo:
For this sake, the macroscopic equations of mechanics and the kinetic equations of the microstructural transformations should form a unified set that be solved simultaneously. As a case study of coupling length and time scales, the trans-scale formulation
Resumo:
This paper reports a multi-scale study on damage evolution process and rupture of gabbro under uniaxial compression with several experimental techniques, including MTS810 testing machine, white digital speckle correlation method, and acoustic emission technique. In particular, the synchronization of the three experimental systems is realized for the study of relationship of deformation and damage at multiple scales. It is found that there are significant correlation between damage evolution at small and large length scales, and rupture at sample scale, especially it displays critical sensitivity at multiple scales and trans-scale fluctuations.
Resumo:
Numerical study of three-dimensional evolution of wake-type flow and vortex dislocations is performed by using a compact finite diffenence-Fourier spectral method to solve 3-D incompressible Navier-Stokes equations. A local spanwise nonuniformity in momentum defect is imposed on the incoming wake-type flow. The present numerical results have shown that the flow instability leads to three-dimensional vortex streets, whose frequency, phase as well as the strength vary with the span caused by the local nonuniformity. The vortex dislocations are generated in the nonuniform region and the large-scale chain-like vortex linkage structures in the dislocations are shown. The generation and the characteristics of the vortex dislocations are described in detail.
Resumo:
The mechanical deformations of nickel nanowire subjected to uniaxial tensile strain at 300 K are simulated by using molecular dynamics with the quantum corrected Sutten-Chen many-body force field. We have used common neighbor analysis method to investigate the structural evolution of Ni nanowire during the elongation process. For the strain rate of 0.1%/ps, the elastic limit is up to about 11% strain with the yield stress of 8.6 GPa. At the elastic stage, the deformation is carried mainly through the uniform elongation of the distances between the layers (perpendicular to the Z-axis) while the atomic structure remains basically unchanged. With further strain, the slips in the {111} planes start to take place in order to accommodate the applied strain to carry the deformation partially, and subsequently the neck forms. The atomic rearrangements in the neck region result in a zigzag change in the stress-strain curve; the atomic structures beyond the region, however, have no significant changes. With the strain close to the point of the breaking, we observe the formation of a one-atom thick necklace in Ni nanowire. The strain rates have no significant effect on the deformation mechanism, but have some influence on the yield stress, the elastic limit, and the fracture strain of the nanowire.
Resumo:
The effects of the unresolved subgrid-scale (SGS) motions on the energy balance of the resolved scales in large eddy simulation (LES) have been investigated actively because modeling the energy transfer between the resolved and unresolved scales is crucial to constructing accurate SGS models. But the subgrid scales not only modify the energy balance, they also contribute to temporal decorrelation of the resolved scales. The importance of this effect in applications including the predictability problem and the evaluation of sound radiation by turbulent flows motivates the present study of the effect of SGS modeling on turbulent time correlations. This paper compares the two-point, two-time Eulerian velocity correlation in isotropic homogeneous turbulence evaluated by direct numerical simulation (DNS) with the correlations evaluated by LES using a standard spectral eddy viscosity. It proves convenient to express the two-point correlations in terms of spatial Fourier decomposition of the velocity field. The LES fields are more coherent than the DNS fields: their time correlations decay more slowly at all resolved scales of motion and both their integral scales and microscales are larger than those of the DNS field. Filtering alone is not responsible for this effect: in the Fourier representation, the time correlations of the filtered DNS field are identical to those of the DNS field itself. The possibility of modeling the decorrelating effects of the unresolved scales of motion by including a random force in the model is briefly discussed. The results could have applications to the problem of computing sound sources in isotropic homogeneous turbulence by LES
Resumo:
Subgrid nonlinear interaction and energy transfer are analyzed using direct numerical simulations of isotropic turbulence. Influences of cutoff wave number at different ranges of scale on the energetics and dynamics have been investigated. It is observed that subgrid-subgrid interaction dominates the turbulent dynamics when cut-off wave number locates in the energy-containing range while resolved-subgrid interaction dominates if it is in the dissipation range; By decomposing the subgrid energy transfer and nonlinear interaction into 'forward' and 'backward' groups according to the sign of triadic interaction, we find that individually each group has very large contribution, but the net of them is much smaller, implying that tremendous cancellation happens between these two groups.
Resumo:
On the basis of the lattice model of MORA and PLACE, Discrete Element Method, and Molecular Dynamics approach, another kind of numerical model is developed. The model consists of a 2-D set of particles linked by three kinds of interactions and arranged into triangular lattice. After the fracture criterion and rules of changes between linking states are given, the particle positions, velocities and accelerations at every time step are calculated using a finite-difference scheme, and the configuration of particles can be gained step by step. Using this model, realistic fracture simulations of brittle solid (especially under pressure) and simulation of earthquake dynamics are made.
Resumo:
The longitudinal fluctuating velocity of a turbulent boundary layer was measured in a water channel at a moderate Reynolds number. The extended self-similar scaling law of structure function proposed by Benzi was verified. The longitudinal fluctuating velocity, in the turbulent boundary layer was decomposed into many multi-scale eddy structures by wavelet transform. The extended self-similar scaling law of structure function for each scale eddy velocity was investigated. The conclusions are I) The statistical properties of turbulence could be self-similar not only at high Reynolds number, but also at moderate and low Reynolds number, and they could be characterized by the same set of scaling exponents xi (1)(n) = n/3 and xi (2)(n) = n/3 of the fully developed regime. 2) The range of scales where the extended self-similarity valid is much larger than the inertial range and extends far deep into the dissipation range,vith the same set of scaling exponents. 3) The extended selfsimilarity is applicable not only for homogeneous turbulence, but also for shear turbulence such as turbulent boundary layers.
Resumo:
This paper proposes to use an extended Gaussian Scale Mixtures (GSM) model instead of the conventional ℓ1 norm to approximate the sparseness constraint in the wavelet domain. We combine this new constraint with subband-dependent minimization to formulate an iterative algorithm on two shift-invariant wavelet transforms, the Shannon wavelet transform and dual-tree complex wavelet transform (DTCWT). This extented GSM model introduces spatially varying information into the deconvolution process and thus enables the algorithm to achieve better results with fewer iterations in our experiments. ©2009 IEEE.
Resumo:
Microstructures and mechanical properties have been studied in aluminium containing a fine dispersion of alumina particles, deformed by cold-rolling to strains between 1.4 and 3.5. The microstructure was characterised by TEM. The deformation structures evolved very rapidly, forming a nanostructured material, with fine subgrains about 0.2 μm in diameter and a fraction of high-angle boundaries which was already high at a strain of 1.4, but continued to increase with rolling strain. The yield stress and ductility of the rolled materials were measured in tension, and properties were similar for all materials. Yield stress measurements were correlated with estimates made using microstructural models. The role of small particles in forming and stabilising the deformation structure is discussed. This nanostructured cold-deformed alloy has mechanical properties which are usefully enhanced at comparatively low cost. This gives it, and similar particle-strengthened alloys, good potential for commercial exploitation. © 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
A 4Gbit/s directly modulated DBR laser is demonstrated with nanometre scale thermal tuning over an extended 20-70°C temperature range. >40dB side mode suppression over the entire temperature range is achieved. © 2005 Optical Society of America.
Resumo:
了解微尺度气体流动特点是微机电系统设计和优化的基础.有关的研究可以上溯到20世纪初Knudsen的平面槽道流动质量流量的测量和Millikan的小球阻力系数的测量,实验结果揭示了稀薄气体效应即尺度效应对气体运动的重要影响.由于流动特征长度很小,微尺度气流经常处于滑流区甚至过渡领域,流动的相似参数为Knudsen数和Mach数.因此可以考虑利用相似准则,通过增大几何尺寸、减小压力的途径,解决微机电系统实验观测遇到的困难.为解决直接模拟MonteCarlo方法分析微机电系统中低速稀薄气流遇到的统计涨落困难,我们提出了信息保存法(IP),该方法能够有效克服统计散布,并已成功用于多种微尺度气流.
Teracluster LSSC-II - Its Designing Principles and Applications in Large Scale Numerical Simulations
Resumo:
The teracluster LSSC-II installed at the State Key Laboratory of Scientific and Engineering Computing, Chinese Academy of Sciences is one of the most powerful PC clusters in China. It has a peek performance of 2Tflops. With a Linpack performance of 1.04Tflops, it is ranked at the 43rd place in the 20th TOP500 List (November 2002), 51st place in the 21st TOP500 List (June 2003), and the 82nd place in the 22nd TOP500 List (November 2003) with a new Linpack performance of 1.3Tflops. In this paper, we present some design principles of this cluster, as well as its applications in some largescale numerical simulations.