912 resultados para Numerical Algorithms and Problems
Resumo:
OBJECTIVE: To evaluate the prevalence of the urinary excretion of BKV and JCV in HIV-infected patients without neurological symptoms. METHODS: Urine samples from HIV-infected patients without neurological symptoms were tested for JC virus and BK virus by PCR. Samples were screened for the presence of polyomavirus with sets of primers complementary to the early region of JCV and BKV genome (AgT). The presence of JC virus or BK virus were confirmed by two other PCR assays using sets of primers complementary to the VP1 gene of each virus. Analysis of the data was performed by the Kruskal-Wallis test for numerical data and Pearson or Yates for categorical variables. RESULTS: A total of 75 patients were included in the study. The overall prevalence of polyomavirus DNA urinary shedding was 67/75 (89.3%). Only BKV DNA was detected in 14/75 (18.7%) urine samples, and only JCV DNA was detected in 11/75 (14.7%) samples. Both BKV and JCV DNA were present in 42/75 (56.0%) samples. CONCLUSION: In this study we found high rates of excretion of JCV, BKV, and simultaneous excretion in HIV+ patients. Also these results differ from the others available on the literature.
Resumo:
The Sciaenids have among the highest species richness, numerical abundance and biomass of any family of fishes along the Brazilian coast. The aim of this study was to analyze the composition and spatial and temporal distribution of as well as the influence of temperature, salinity and depth on the sciaenid assemblage of Santos Bay. A total of 29,306 individuals belonging to 13 genera and 21 species were captured, between November 2004 and December 2005, with Stellifer rastrifer representing 70.4% of the total composition. Highest abundance and biomass occurred on the east side of the bay, and the highest species richness occurred near the mouth of the Santos Channel, which was also the site with least similarity to the other sites. Highest abundances occurred in April 2005 and lowest in September 2005. Key environmental factors influencing distribution of sciaenids were depth and temperature.
Resumo:
[ES] La Planificación de Rutas o Caminos es un disciplina de Robótica que trata la búsqueda de caminos factibles u óptimos. Para la mayoría de vehículos y entornos, no es un problema trivial y por tanto nos encontramos con un gran diversidad de algoritmos para resolverlo, no sólo en Robótica e Inteligencia Artificial, sino también como parte de la literatura de Optimización, con Métodos Numéricos y Algoritmos Bio-inspirados, como Algoritmos Genéticos y el Algoritmo de la Colonia de Hormigas. El caso particular de escenarios de costes variables es considerablemente difícil de abordar porque el entorno en el que se mueve el vehículo cambia con el tiempo. El presente trabajo de tesis estudia este problema y propone varias soluciones prácticas para aplicaciones de Robótica Submarina.
Resumo:
[EN] This paper proposes the incorporation of engineering knowledge through both (a) advanced state-of-the-art preference handling decision-making tools integrated in multiobjective evolutionary algorithms and (b) engineering knowledge-based variance reduction simulation as enhancing tools for the robust optimum design of structural frames taking uncertainties into consideration in the design variables.The simultaneous minimization of the constrained weight (adding structuralweight and average distribution of constraint violations) on the one hand and the standard deviation of the distribution of constraint violation on the other are handled with multiobjective optimization-based evolutionary computation in two different multiobjective algorithms. The optimum design values of the deterministic structural problem in question are proposed as a reference point (the aspiration level) in reference-point-based evolutionary multiobjective algorithms (here g-dominance is used). Results including
Resumo:
The present PhD project was focused on the development of new tools and methods for luminescence-based techniques. In particular, the ultimate goal was to present substantial improvements to the currently available technologies for both research and diagnostic in the fields of biology, proteomics and genomics. Different aspects and problems were investigated, requiring different strategies and approaches. The whole work was thus divided into separate chapters, each based on the study of one specific aspect of luminescence: Chemiluminescence, Fluorescence and Electrochemiluminescence. CHAPTER 1, Chemiluminescence The work on luminol-enhancer solution lead to a new luminol solution formulation with 1 order of magnitude lower detection limit for HRP. This technology was patented with Cyanagen brand and is now sold worldwide for Western Blot and ELISA applications. CHAPTER 2, Fluorescescence The work on dyed-doped silica nanoparticles is marking a new milestone in the development of nanotechnologies for biological applications. While the project is still in progress, preliminary studies on model structures are leading to very promising results. The improved brightness of these nano-sized objects, their simple synthesis and handling, their low toxicity will soon turn them, we strongly believe, into a new generation of fluorescent labels for many applications. CHAPTER 3, Electrochemiluminescence The work on electrochemiluminescence produced interesting results that can potentially turn into great improvements from an analytical point of view. Ru(bpy)3 derivatives were employed both for on-chip microarray (Chapter 3.1) and for microscopic imaging applications (Chapter 3.2). The development of these new techniques is still under investigation, but the obtained results confirm the possibility to achieve the final goal. Furthermore the development of new ECL-active species (Chapter 3.3, 3.4, 3.5) and their use in these applications can significantly improve overall performances, thus helping to spread ECL as powerful analytical tool for routinary techniques. To conclude, the results obtained are of strong value to largely increase the sensitivity of luminescence techniques, thus fulfilling the expectation we had at the beginning of this research work.
Resumo:
The wheel - rail contact analysis plays a fundamental role in the multibody modeling of railway vehicles. A good contact model must provide an accurate description of the global contact phenomena (contact forces and torques, number and position of the contact points) and of the local contact phenomena (position and shape of the contact patch, stresses and displacements). The model has also to assure high numerical efficiency (in order to be implemented directly online within multibody models) and a good compatibility with commercial multibody software (Simpack Rail, Adams Rail). The wheel - rail contact problem has been discussed by several authors and many models can be found in the literature. The contact models can be subdivided into two different categories: the global models and the local (or differential) models. Currently, as regards the global models, the main approaches to the problem are the so - called rigid contact formulation and the semi – elastic contact description. The rigid approach considers the wheel and the rail as rigid bodies. The contact is imposed by means of constraint equations and the contact points are detected during the dynamic simulation by solving the nonlinear algebraic differential equations associated to the constrained multibody system. Indentation between the bodies is not permitted and the normal contact forces are calculated through the Lagrange multipliers. Finally the Hertz’s and the Kalker’s theories allow to evaluate the shape of the contact patch and the tangential forces respectively. Also the semi - elastic approach considers the wheel and the rail as rigid bodies. However in this case no kinematic constraints are imposed and the indentation between the bodies is permitted. The contact points are detected by means of approximated procedures (based on look - up tables and simplifying hypotheses on the problem geometry). The normal contact forces are calculated as a function of the indentation while, as in the rigid approach, the Hertz’s and the Kalker’s theories allow to evaluate the shape of the contact patch and the tangential forces. Both the described multibody approaches are computationally very efficient but their generality and accuracy turn out to be often insufficient because the physical hypotheses behind these theories are too restrictive and, in many circumstances, unverified. In order to obtain a complete description of the contact phenomena, local (or differential) contact models are needed. In other words wheel and rail have to be considered elastic bodies governed by the Navier’s equations and the contact has to be described by suitable analytical contact conditions. The contact between elastic bodies has been widely studied in literature both in the general case and in the rolling case. Many procedures based on variational inequalities, FEM techniques and convex optimization have been developed. This kind of approach assures high generality and accuracy but still needs very large computational costs and memory consumption. Due to the high computational load and memory consumption, referring to the current state of the art, the integration between multibody and differential modeling is almost absent in literature especially in the railway field. However this integration is very important because only the differential modeling allows an accurate analysis of the contact problem (in terms of contact forces and torques, position and shape of the contact patch, stresses and displacements) while the multibody modeling is the standard in the study of the railway dynamics. In this thesis some innovative wheel – rail contact models developed during the Ph. D. activity will be described. Concerning the global models, two new models belonging to the semi – elastic approach will be presented; the models satisfy the following specifics: 1) the models have to be 3D and to consider all the six relative degrees of freedom between wheel and rail 2) the models have to consider generic railway tracks and generic wheel and rail profiles 3) the models have to assure a general and accurate handling of the multiple contact without simplifying hypotheses on the problem geometry; in particular the models have to evaluate the number and the position of the contact points and, for each point, the contact forces and torques 4) the models have to be implementable directly online within the multibody models without look - up tables 5) the models have to assure computation times comparable with those of commercial multibody software (Simpack Rail, Adams Rail) and compatible with RT and HIL applications 6) the models have to be compatible with commercial multibody software (Simpack Rail, Adams Rail). The most innovative aspect of the new global contact models regards the detection of the contact points. In particular both the models aim to reduce the algebraic problem dimension by means of suitable analytical techniques. This kind of reduction allows to obtain an high numerical efficiency that makes possible the online implementation of the new procedure and the achievement of performance comparable with those of commercial multibody software. At the same time the analytical approach assures high accuracy and generality. Concerning the local (or differential) contact models, one new model satisfying the following specifics will be presented: 1) the model has to be 3D and to consider all the six relative degrees of freedom between wheel and rail 2) the model has to consider generic railway tracks and generic wheel and rail profiles 3) the model has to assure a general and accurate handling of the multiple contact without simplifying hypotheses on the problem geometry; in particular the model has to able to calculate both the global contact variables (contact forces and torques) and the local contact variables (position and shape of the contact patch, stresses and displacements) 4) the model has to be implementable directly online within the multibody models 5) the model has to assure high numerical efficiency and a reduced memory consumption in order to achieve a good integration between multibody and differential modeling (the base for the local contact models) 6) the model has to be compatible with commercial multibody software (Simpack Rail, Adams Rail). In this case the most innovative aspects of the new local contact model regard the contact modeling (by means of suitable analytical conditions) and the implementation of the numerical algorithms needed to solve the discrete problem arising from the discretization of the original continuum problem. Moreover, during the development of the local model, the achievement of a good compromise between accuracy and efficiency turned out to be very important to obtain a good integration between multibody and differential modeling. At this point the contact models has been inserted within a 3D multibody model of a railway vehicle to obtain a complete model of the wagon. The railway vehicle chosen as benchmark is the Manchester Wagon the physical and geometrical characteristics of which are easily available in the literature. The model of the whole railway vehicle (multibody model and contact model) has been implemented in the Matlab/Simulink environment. The multibody model has been implemented in SimMechanics, a Matlab toolbox specifically designed for multibody dynamics, while, as regards the contact models, the CS – functions have been used; this particular Matlab architecture allows to efficiently connect the Matlab/Simulink and the C/C++ environment. The 3D multibody model of the same vehicle (this time equipped with a standard contact model based on the semi - elastic approach) has been then implemented also in Simpack Rail, a commercial multibody software for railway vehicles widely tested and validated. Finally numerical simulations of the vehicle dynamics have been carried out on many different railway tracks with the aim of evaluating the performances of the whole model. The comparison between the results obtained by the Matlab/ Simulink model and those obtained by the Simpack Rail model has allowed an accurate and reliable validation of the new contact models. In conclusion to this brief introduction to my Ph. D. thesis, we would like to thank Trenitalia and the Regione Toscana for the support provided during all the Ph. D. activity. Moreover we would also like to thank the INTEC GmbH, the society the develops the software Simpack Rail, with which we are currently working together to develop innovative toolboxes specifically designed for the wheel rail contact analysis.
Resumo:
The present PhD thesis summarizes the three-years study about the neutronic investigation of a new concept nuclear reactor aiming at the optimization and the sustainable management of nuclear fuel in a possible European scenario. A new generation nuclear reactor for the nuclear reinassance is indeed desired by the actual industrialized world, both for the solution of the energetic question arising from the continuously growing energy demand together with the corresponding reduction of oil availability, and the environment question for a sustainable energy source free from Long Lived Radioisotopes and therefore geological repositories. Among the Generation IV candidate typologies, the Lead Fast Reactor concept has been pursued, being the one top rated in sustainability. The European Lead-cooled SYstem (ELSY) has been at first investigated. The neutronic analysis of the ELSY core has been performed via deterministic analysis by means of the ERANOS code, in order to retrieve a stable configuration for the overall design of the reactor. Further analyses have been carried out by means of the Monte Carlo general purpose transport code MCNP, in order to check the former one and to define an exact model of the system. An innovative system of absorbers has been conceptualized and designed for both the reactivity compensation and regulation of the core due to cycle swing, as well as for safety in order to guarantee the cold shutdown of the system in case of accident. Aiming at the sustainability of nuclear energy, the steady-state nuclear equilibrium has been investigated and generalized into the definition of the ``extended'' equilibrium state. According to this, the Adiabatic Reactor Theory has been developed, together with a New Paradigm for Nuclear Power: in order to design a reactor that does not exchange with the environment anything valuable (thus the term ``adiabatic''), in the sense of both Plutonium and Minor Actinides, it is required indeed to revert the logical design scheme of nuclear cores, starting from the definition of the equilibrium composition of the fuel and submitting to the latter the whole core design. The New Paradigm has been applied then to the core design of an Adiabatic Lead Fast Reactor complying with the ELSY overall system layout. A complete core characterization has been done in order to asses criticality and power flattening; a preliminary evaluation of the main safety parameters has been also done to verify the viability of the system. Burn up calculations have been then performed in order to investigate the operating cycle for the Adiabatic Lead Fast Reactor; the fuel performances have been therefore extracted and inserted in a more general analysis for an European scenario. The present nuclear reactors fleet has been modeled and its evolution simulated by means of the COSI code in order to investigate the materials fluxes to be managed in the European region. Different plausible scenarios have been identified to forecast the evolution of the European nuclear energy production, including the one involving the introduction of Adiabatic Lead Fast Reactors, and compared to better analyze the advantages introduced by the adoption of new concept reactors. At last, since both ELSY and the ALFR represent new concept systems based upon innovative solutions, the neutronic design of a demonstrator reactor has been carried out: such a system is intended to prove the viability of technology to be implemented in the First-of-a-Kind industrial power plant, with the aim at attesting the general strategy to use, to the largest extent. It was chosen then to base the DEMO design upon a compromise between demonstration of developed technology and testing of emerging technology in order to significantly subserve the purpose of reducing uncertainties about construction and licensing, both validating ELSY/ALFR main features and performances, and to qualify numerical codes and tools.
Resumo:
The aim of the work is to conduct a finite element model analysis on a small – size concrete beam and on a full size concrete beam internally reinforced with BFRP exposed at elevated temperatures. Experimental tests performed at Kingston University have been used to compare the results from the numerical analysis for the small – size concrete beam. Once the behavior of the small – size beam at room temperature is investigated and switching to the heating phase reinforced beams are tested at 100°C, 200°C and 300°C in loaded condition. The aim of the finite element analysis is to reflect the three – point bending test adopted into the oven during the exposure of the beam at room temperature and at elevated temperatures. Performance and deformability of reinforced beams are straightly correlated to the material properties and a wide analysis on elastic modulus and coefficient of thermal expansion is given in this work. Develop a good correlation between the numerical model and the experimental test is the main objective of the analysis on the small – size concrete beam, for both modelling the aim is also to estimate which is the deterioration of the material properties due to the heating process and the influence of different parameters on the final result. The focus of the full – size modelling which involved the last part of this work is to evaluate the effect of elevated temperatures, the material deterioration and the deflection trend on a reinforced beam characterized by a different size. A comparison between the results from different modelling has been developed.
Resumo:
A polar stratospheric cloud submodel has been developed and incorporated in a general circulation model including atmospheric chemistry (ECHAM5/MESSy). The formation and sedimentation of polar stratospheric cloud (PSC) particles can thus be simulated as well as heterogeneous chemical reactions that take place on the PSC particles. For solid PSC particle sedimentation, the need for a tailor-made algorithm has been elucidated. A sedimentation scheme based on first order approximations of vertical mixing ratio profiles has been developed. It produces relatively little numerical diffusion and can deal well with divergent or convergent sedimentation velocity fields. For the determination of solid PSC particle sizes, an efficient algorithm has been adapted. It assumes a monodisperse radii distribution and thermodynamic equilibrium between the gas phase and the solid particle phase. This scheme, though relatively simple, is shown to produce particle number densities and radii within the observed range. The combined effects of the representations of sedimentation and solid PSC particles on vertical H2O and HNO3 redistribution are investigated in a series of tests. The formation of solid PSC particles, especially of those consisting of nitric acid trihydrate, has been discussed extensively in recent years. Three particle formation schemes in accordance with the most widely used approaches have been identified and implemented. For the evaluation of PSC occurrence a new data set with unprecedented spatial and temporal coverage was available. A quantitative method for the comparison of simulation results and observations is developed and applied. It reveals that the relative PSC sighting frequency can be reproduced well with the PSC submodel whereas the detailed modelling of PSC events is beyond the scope of coarse global scale models. In addition to the development and evaluation of new PSC submodel components, parts of existing simulation programs have been improved, e.g. a method for the assimilation of meteorological analysis data in the general circulation model, the liquid PSC particle composition scheme, and the calculation of heterogeneous reaction rate coefficients. The interplay of these model components is demonstrated in a simulation of stratospheric chemistry with the coupled general circulation model. Tests against recent satellite data show that the model successfully reproduces the Antarctic ozone hole.
Resumo:
Being basic ingredients of numerous daily-life products with significant industrial importance as well as basic building blocks for biomaterials, charged hydrogels continue to pose a series of unanswered challenges for scientists even after decades of practical applications and intensive research efforts. Despite a rather simple internal structure it is mainly the unique combination of short- and long-range forces which render scientific investigations of their characteristic properties to be quite difficult. Hence early on computer simulations were used to link analytical theory and empirical experiments, bridging the gap between the simplifying assumptions of the models and the complexity of real world measurements. Due to the immense numerical effort, even for high performance supercomputers, system sizes and time scales were rather restricted until recently, whereas it only now has become possible to also simulate a network of charged macromolecules. This is the topic of the presented thesis which investigates one of the fundamental and at the same time highly fascinating phenomenon of polymer research: The swelling behaviour of polyelectrolyte networks. For this an extensible simulation package for the research on soft matter systems, ESPResSo for short, was created which puts a particular emphasis on mesoscopic bead-spring-models of complex systems. Highly efficient algorithms and a consistent parallelization reduced the necessary computation time for solving equations of motion even in case of long-ranged electrostatics and large number of particles, allowing to tackle even expensive calculations and applications. Nevertheless, the program has a modular and simple structure, enabling a continuous process of adding new potentials, interactions, degrees of freedom, ensembles, and integrators, while staying easily accessible for newcomers due to a Tcl-script steering level controlling the C-implemented simulation core. Numerous analysis routines provide means to investigate system properties and observables on-the-fly. Even though analytical theories agreed on the modeling of networks in the past years, our numerical MD-simulations show that even in case of simple model systems fundamental theoretical assumptions no longer apply except for a small parameter regime, prohibiting correct predictions of observables. Applying a "microscopic" analysis of the isolated contributions of individual system components, one of the particular strengths of computer simulations, it was then possible to describe the behaviour of charged polymer networks at swelling equilibrium in good solvent and close to the Theta-point by introducing appropriate model modifications. This became possible by enhancing known simple scaling arguments with components deemed crucial in our detailed study, through which a generalized model could be constructed. Herewith an agreement of the final system volume of swollen polyelectrolyte gels with results of computer simulations could be shown successfully over the entire investigated range of parameters, for different network sizes, charge fractions, and interaction strengths. In addition, the "cell under tension" was presented as a self-regulating approach for predicting the amount of swelling based on the used system parameters only. Without the need for measured observables as input, minimizing the free energy alone already allows to determine the the equilibrium behaviour. In poor solvent the shape of the network chains changes considerably, as now their hydrophobicity counteracts the repulsion of like-wise charged monomers and pursues collapsing the polyelectrolytes. Depending on the chosen parameters a fragile balance emerges, giving rise to fascinating geometrical structures such as the so-called pear-necklaces. This behaviour, known from single chain polyelectrolytes under similar environmental conditions and also theoretically predicted, could be detected for the first time for networks as well. An analysis of the total structure factors confirmed first evidences for the existence of such structures found in experimental results.
Resumo:
The PhD activity described in the document is part of the Microsatellite and Microsystem Laboratory of the II Faculty of Engineering, University of Bologna. The main objective is the design and development of a GNSS receiver for the orbit determination of microsatellites in low earth orbit. The development starts from the electronic design and goes up to the implementation of the navigation algorithms, covering all the aspects that are involved in this type of applications. The use of GPS receivers for orbit determination is a consolidated application used in many space missions, but the development of the new GNSS system within few years, such as the European Galileo, the Chinese COMPASS and the Russian modernized GLONASS, proposes new challenges and offers new opportunities to increase the orbit determination performances. The evaluation of improvements coming from the new systems together with the implementation of a receiver that is compatible with at least one of the new systems, are the main activities of the PhD. The activities can be divided in three section: receiver requirements definition and prototype implementation, design and analysis of the GNSS signal tracking algorithms, and design and analysis of the navigation algorithms. The receiver prototype is based on a Virtex FPGA by Xilinx, and includes a PowerPC processor. The architecture follows the software defined radio paradigm, so most of signal processing is performed in software while only what is strictly necessary is done in hardware. The tracking algorithms are implemented as a combination of Phase Locked Loop and Frequency Locked Loop for the carrier, and Delay Locked Loop with variable bandwidth for the code. The navigation algorithm is based on the extended Kalman filter and includes an accurate LEO orbit model.
Resumo:
In this thesis a mathematical model was derived that describes the charge and energy transport in semiconductor devices like transistors. Moreover, numerical simulations of these physical processes are performed. In order to accomplish this, methods of theoretical physics, functional analysis, numerical mathematics and computer programming are applied. After an introduction to the status quo of semiconductor device simulation methods and a brief review of historical facts up to now, the attention is shifted to the construction of a model, which serves as the basis of the subsequent derivations in the thesis. Thereby the starting point is an important equation of the theory of dilute gases. From this equation the model equations are derived and specified by means of a series expansion method. This is done in a multi-stage derivation process, which is mainly taken from a scientific paper and which does not constitute the focus of this thesis. In the following phase we specify the mathematical setting and make precise the model assumptions. Thereby we make use of methods of functional analysis. Since the equations we deal with are coupled, we are concerned with a nonstandard problem. In contrary, the theory of scalar elliptic equations is established meanwhile. Subsequently, we are preoccupied with the numerical discretization of the equations. A special finite-element method is used for the discretization. This special approach has to be done in order to make the numerical results appropriate for practical application. By a series of transformations from the discrete model we derive a system of algebraic equations that are eligible for numerical evaluation. Using self-made computer programs we solve the equations to get approximate solutions. These programs are based on new and specialized iteration procedures that are developed and thoroughly tested within the frame of this research work. Due to their importance and their novel status, they are explained and demonstrated in detail. We compare these new iterations with a standard method that is complemented by a feature to fit in the current context. A further innovation is the computation of solutions in three-dimensional domains, which are still rare. Special attention is paid to applicability of the 3D simulation tools. The programs are designed to have justifiable working complexity. The simulation results of some models of contemporary semiconductor devices are shown and detailed comments on the results are given. Eventually, we make a prospect on future development and enhancements of the models and of the algorithms that we used.
Resumo:
The lateral characteristics of tires in terms of lateral forces as a function of sideslip angle is a focal point in the prediction of ground loads and ground handling aircraft behavior. However, tests to validate such coefficients are not mandatory to obtain Aircraft Type Certification and so they are not available for ATR tires. Anyway, some analytical values are implemented in ATR calculation codes (Flight Qualities in-house numerical code and Loads in-house numerical code). Hence, the goal of my work is to further investigate and validate lateral tires characteristics by means of: exploitation and re-parameterization of existing test on NLG tires, implementation of easy-handle model based on DFDR parameters to compute sideslip angles, application of this model to compute lateral loads on existing flight tests and incident cases, analysis of results. The last part of this work is dedicated to the preliminary study of a methodology to perform a test to retrieve lateral tire loads during ground turning with minimum requirements in terms of aircraft test instrumentation. This represents the basis for future works.
Resumo:
This thesis presents some different techniques designed to drive a swarm of robots in an a-priori unknown environment in order to move the group from a starting area to a final one avoiding obstacles. The presented techniques are based on two different theories used alone or in combination: Swarm Intelligence (SI) and Graph Theory. Both theories are based on the study of interactions between different entities (also called agents or units) in Multi- Agent Systems (MAS). The first one belongs to the Artificial Intelligence context and the second one to the Distributed Systems context. These theories, each one from its own point of view, exploit the emergent behaviour that comes from the interactive work of the entities, in order to achieve a common goal. The features of flexibility and adaptability of the swarm have been exploited with the aim to overcome and to minimize difficulties and problems that can affect one or more units of the group, having minimal impact to the whole group and to the common main target. Another aim of this work is to show the importance of the information shared between the units of the group, such as the communication topology, because it helps to maintain the environmental information, detected by each single agent, updated among the swarm. Swarm Intelligence has been applied to the presented technique, through the Particle Swarm Optimization algorithm (PSO), taking advantage of its features as a navigation system. The Graph Theory has been applied by exploiting Consensus and the application of the agreement protocol with the aim to maintain the units in a desired and controlled formation. This approach has been followed in order to conserve the power of PSO and to control part of its random behaviour with a distributed control algorithm like Consensus.
Resumo:
To assist rational compound design of organic semiconductors, two problems need to be addressed. First, the material morphology has to be known at an atomistic level. Second, with the morphology at hand, an appropriate charge transport model needs to be developed in order to link charge carrier mobility to structure.rnrnThe former can be addressed by generating atomistic morphologies using molecular dynamics simulations. However, the accessible range of time- and length-scales is limited. To overcome these limitations, systematic coarse-graining methods can be used. In the first part of the thesis, the Versatile Object-oriented Toolkit for Coarse-graining Applications is introduced, which provides a platform for the implementation of coarse-graining methods. Tools to perform Boltzmann inversion, iterative Boltzmann inversion, inverse Monte Carlo, and force-matching are available and have been tested on a set of model systems (water, methanol, propane and a single hexane chain). Advantages and problems of each specific method are discussed.rnrnIn partially disordered systems, the second issue is closely connected to constructing appropriate diabatic states between which charge transfer occurs. In the second part of the thesis, the description initially used for small conjugated molecules is extended to conjugated polymers. Here, charge transport is modeled by introducing conjugated segments on which charge carriers are localized. Inter-chain transport is then treated within a high temperature non-adiabatic Marcus theory while an adiabatic rate expression is used for intra-chain transport. The charge dynamics is simulated using the kinetic Monte Carlo method.rnrnThe entire framework is finally employed to establish a relation between the morphology and the charge mobility of the neutral and doped states of polypyrrole, a conjugated polymer. It is shown that for short oligomers, charge carrier mobility is insensitive to the orientational molecular ordering and is determined by the threshold transfer integral which connects percolating clusters of molecules that form interconnected networks. The value of this transfer integral can be related to the radial distribution function. Hence, charge mobility is mainly determined by the local molecular packing and is independent of the global morphology, at least in such a non-crystalline state of a polymer.