986 resultados para Nonlinear dynamical effect
Resumo:
BACKGROUND: The use of the volatile salt ammonium carbamate in protein downstream processing has recently been proposed. The main advantage of using volatile salts is that they can be removed from precipitates and liquid effluents through pressure reduction or temperature increase. Although previous studies showed that ammonium carbamate is efficient as a precipitant agent, there was evidence of denaturation in some enzymes. In this work, the effect of ammonium carbamate on the stability of five enzymes was evaluated. RESULTS: Activity assays showed that alpha-amylase (1,4-alpha-D-glucan glucanohydrolase, EC 3.2.1.1), lysozyme (1,4-beta-N-acetylmuramoylhydrolase, EC 3.2.1.17) and lipase (triacyl glycerol acyl hydrolase, EC 3.1.1.3) did not undergo activity loss in ammonium carbamate solutions with concentrations from 1.0 to 5.0 mol kg(-1), whereas cellulase complex (1,4-(1,3 : 14)-beta-D-glucan 4-glucano-hydrolase, EC 3.2.1.4) and peroxidase (hydrogen peroxide oxidoreductase, EC 1.11.1.7) showed an average activity loss of 55% and 44%, respectively. Precipitation assays did not show enzyme denaturation or phase separation for alpha-amylase and lipase, while celullase and peroxidase precipitated with some activity reduction. Analysis of similar experiments with ammonium and sodium sulfate did not affect the activity of enzymes. CONCLUSION: Celullase and peroxidase were denatured by ammonium carbamate. While more systematic studies are not available, care must be taken in designing a protein precipitation with this salt. The results suggest that the generally accepted idea that salts that denature proteins tend to solubilize them does not hold for ammonium carbamate. (C) 2010 Society of Chemical Industry
Resumo:
Minimal pasteurization of orange juice (OJ) consists of using minimum holding time and temperature to ensure partial inactivation of pectin methylesterase (PME). This process produces juice with preserved sensory attributes and has a better acceptance by consumers when compared with commercially pasteurized OJ. Sensory profile and physical-chemical characteristics of minimally processed OJ was determined, during refrigerated storage, for two OJ blends with different pH values and the same level of PME thermal inactivation. A selected and trained sensorial panel (n = 16) performed sensory analysis, based on a quantitative descriptive analysis, twice a week for 30 days, evaluating the attributes of appearance (suspended particles and color intensity), odor (natural orange and fermented orange) and flavor (orange characteristic, fermented orange, acid and bitter taste). Storage presented great effect on OJ sensory profile; however, it was not noticeable on physical-chemical characteristics.
Resumo:
The salt-induced precipitation of lysozyme from aqueous solutions was studied through precipitation assays in which the equilibrium compositions of the coexisting phases were determined. Lysozyme precipitation experiments were carried out at 5, 15 and 25 degrees C and pH 7.0 with ammonium sulfate, sodium sulfate and sodium chloride as precipitating agents. In these experiments a complete separation of the coexisting phases (liquid and solid) could not be achieved. Nevertheless it was possible to determine the composition of the precipitate. The enzymatic activity of lysozyme in the supernatant phase as well as in the precipitate phase was also determined. The activity balance suggests that there is a relationship between the composition of the true precipitate and the total activity recovery. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
For the optimal design of plate heat exchangers (PHEs), an accurate thermal-hydraulic model that takes into account the effect of the flow arrangement on the heat load and pressure drop is necessary. In the present study, the effect of the flow arrangement on the pressure drop of a PHE is investigated. Thirty two different arrangements were experimentally tested using a laboratory scale PHE with flat plates. The experimental data was used for (a) determination of an empirical correlation for the effect of the number of passes and number of flow channels per pass on the pressure drop; (b) validation of a friction factor model through parameter estimation; and (c) comparison with the simulation results obtained with a CFD (computational fluid dynamics) model of the PHE. All three approaches resulted in a good agreement between experimental and predicted values of pressure drop. Moreover, the CFD model is used for evaluating the flow maldistribution in a PHE with two channels Per Pass. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Effects of titanium carbide (TiC) addition on structural and magnetic properties of isotropic (Pr,Nd)-Fe-B nanocrystalline magnetic materials have been investigated. In this work, we investigate the effect of TiC addition on a (Pr,Nd)-poor and B-rich composition, as well as on a B-poor and (Nd, Pr)-rich composition. Rapidly solidified (Pr, Nd)-Fe-B alloys were prepared by melt-spinning. The compositions studied were (Pr(1-x)Nd(x))(4)Fe(78)B(18) (x = 0, 0.5, and 1) with addition of 3 at% TiC. Unlike the (Pr(x)Nd(1-x))(9.5)Fe(84.5)B(6) materials that present excellent values for coercive. field and energy product, the (Pr,Nd)-poor and B-rich composition alloys with TiC addition present lower values. Rietveld analysis of X-ray data and Mossbauer spectroscopy revealed that samples are predominantly composed of Fe(3)B and alpha-Fe. For the RE-rich compositions (Pr(x)Nd(1-x))(9.5)Fe(84.5)B(6) (x = 0.1, 0.25, 0.5, 0.75, and 1) with the addition of 3 at% TiC, the highest coercive field and energy product (8.4 kOe and 14.4 MGOe, respectively) were obtained for the composition Pr(9.5)Fe(84.5)B(6). (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The salt-induced precipitation of lysozyme from aqueous solutions was studied at 25 degrees C and various pH values by cloud-point investigations, precipitation experiments (analysing the compositions of the coexisting phases) and microscopic investigations of the precipitates. Sodium sulphate as well as ammonium sulphate were used to induce the precipitation. The experimental results are discussed and used to develop a scheme of the phase equilibrium in water-rich aqueous solutions of lysozyme and either Na2SO4 or (NH4)(2)SO4. (C) 2007 Elsevier B.V All rights reserved.
Resumo:
The production of red pigments and citrinin by Monascus purpureus CCT3802 was investigated in submerged batch cultures performed in two phases: in the first phase, cells were grown on glucose, at pH 4.5, 5.5 or 6.5; after glucose depletion, pH was adjusted, when necessary, to 4.5, 5.5, 6.5, 7.0, 8.0 or 8.5, for a production phase. The highest total red pigments absorbance of 11.3 U was 16 times greater than the lowest absorbance and was achieved with growth at pH 5.5, followed by production at pH 8.5, which causes an immediate reduction of the intra cellular red pigments from 75% to 17% of the total absorbance. The lowest citrinin concentration, 5.5 mg L-1, was verified in the same culture while the highest concentration, 55 mg L-1, was verified in cultures entirely carried out at pH 5.5. An alkaline medium, besides promoting intra cellular red pigments excretion, strongly represses citrinin synthesis.
Resumo:
The present work reports on the effect of the type of backside contact used in the electrochemical process and their relation with the structural features and optical responses of the one-dimensional photonic crystal (PC) anodized in simple and double electrochemical cell. The PC, obtained in the single cell, showed to have thicker layers than of the PC obtained in double electrochemical cell. Additionally, the PC obtained in double cell showed highest reflectance in the band gap region than of the PCs obtained in single cell. These results suggest that the interface roughness between adjacent layers in the PC devices obtained in double electrochemical cell is minimized. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The temperature influence on the gate-induced floating body effect (GIFBE) in fully depleted (FD) silicon-on-insulator (SOI) nMOSFETs is investigated, based on experimental results and two-dimensional numerical simulations. The GIFBE behavior will be evaluated taking into account the impact of carrier recombination and of the effective electric field mobility degradation on the second peak in the transconductance (gm). This floating body effect is also analyzed as a function of temperature. It is shown that the variation of the studied parameters with temperature results in a ""C"" shape of the threshold voltage corresponding with the second peak in the gm curve. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Among several process variability sources, valve friction and inadequate controller tuning are supposed to be two of the most prevalent. Friction quantification methods can be applied to the development of model-based compensators or to diagnose valves that need repair, whereas accurate process models can be used in controller retuning. This paper extends existing methods that jointly estimate the friction and process parameters, so that a nonlinear structure is adopted to represent the process model. The developed estimation algorithm is tested with three different data sources: a simulated first order plus dead time process, a hybrid setup (composed of a real valve and a simulated pH neutralization process) and from three industrial datasets corresponding to real control loops. The results demonstrate that the friction is accurately quantified, as well as ""good"" process models are estimated in several situations. Furthermore, when a nonlinear process model is considered, the proposed extension presents significant advantages: (i) greater accuracy for friction quantification and (ii) reasonable estimates of the nonlinear steady-state characteristics of the process. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper considers two aspects of the nonlinear H(infinity) control problem: the use of weighting functions for performance and robustness improvement, as in the linear case, and the development of a successive Galerkin approximation method for the solution of the Hamilton-Jacobi-Isaacs equation that arises in the output-feedback case. Design of nonlinear H(infinity) controllers obtained by the well-established Taylor approximation and by the proposed Galerkin approximation method applied to a magnetic levitation system are presented for comparison purposes.
Resumo:
Although the formulation of the nonlinear theory of H(infinity) control has been well developed, solving the Hamilton-Jacobi-Isaacs equation remains a challenge and is the major bottleneck for practical application of the theory. Several numerical methods have been proposed for its solution. In this paper, results on convergence and stability for a successive Galerkin approximation approach for nonlinear H(infinity) control via output feedback are presented. An example is presented illustrating the application of the algorithm.
Resumo:
This work considers a semi-implicit system A, that is, a pair (S, y), where S is an explicit system described by a state representation (x)over dot(t) = f(t, x(t), u(t)), where x(t) is an element of R(n) and u(t) is an element of R(m), which is subject to a set of algebraic constraints y(t) = h(t, x(t), u(t)) = 0, where y(t) is an element of R(l). An input candidate is a set of functions v = (v(1),.... v(s)), which may depend on time t, on x, and on u and its derivatives up to a Finite order. The problem of finding a (local) proper state representation (z)over dot = g(t, z, v) with input v for the implicit system Delta is studied in this article. The main result shows necessary and sufficient conditions for the solution of this problem, under mild assumptions on the class of admissible state representations of Delta. These solvability conditions rely on an integrability test that is computed from the explicit system S. The approach of this article is the infinite-dimensional differential geometric setting of Fliess, Levine, Martin, and Rouchon (1999) (`A Lie-Backlund Approach to Equivalence and Flatness of Nonlinear Systems`, IEEE Transactions on Automatic Control, 44(5), (922-937)).
Resumo:
Electromagnetic suspension systems are inherently nonlinear and often face hardware limitation when digitally controlled. The main contributions of this paper are: the design of a nonlinear H(infinity) controller. including dynamic weighting functions, applied to a large gap electromagnetic suspension system and the presentation of a procedure to implement this controller on a fixed-point DSP, through a methodology able to translate a floating-point algorithm into a fixed-point algorithm by using l(infinity) norm minimization due to conversion error. Experimental results are also presented, in which the performance of the nonlinear controller is evaluated specifically in the initial suspension phase. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This essay is a trial on giving some mathematical ideas about the concept of biological complexity, trying to explore four different attributes considered to be essential to characterize a complex system in a biological context: decomposition, heterogeneous assembly, self-organization, and adequacy. It is a theoretical and speculative approach, opening some possibilities to further numerical and experimental work, illustrated by references to several researches that applied the concepts presented here. (C) 2008 Elsevier B.V. All rights reserved.