962 resultados para Nicholas II, Emperor of Russia, 1868-1918.
Resumo:
This work presents the preliminary study of new carbonaceous materials (CMs) obtained from exhausted sludge, their use in the heterogeneous anaerobic process of biodecolorization of azo dyes and the comparison of their performance with one commercial active carbon. The preparation of carbonaceous materials was conducted through chemical activation and carbonization. Chemical activation was carried out through impregnation of sludge-exhausted materials with ZnCl2 and the activation by means of carbonization at different temperatures (400, 600 and 800°C). Their physicochemical and surface characteristics were also investigated. Sludge based carbonaceous (SBC) materials SBC400, SBC600 and SBC800 present values of 13.0, 111.3 and 202.0m(2)/g of surface area. Biodecolorization levels of 76% were achieved for SBC600 and 86% for SBC800 at space time (τ) of 1.0min, similar to that obtained with commercial activated carbons in the continuous anaerobic up-flow packed bed reactor (UPBR). The experimental data fit well to the first order kinetic model and equilibrium data are well represented by the Langmuir isotherm model. Carbonaceous materials show high level of biodecolorization even at very short space times. Results indicate that carbonaceous materials prepared from sludge-exhausted materials have outstanding textural properties and significant degradation capacity for treating textile effluents.
Resumo:
The International Society for Clinical Densitometry (ISCD) has developed new official positions for the clinical use of quantitative computed tomography (QCT)-based finite element analysis of the spine and hip. The ISCD task force for QCT reviewed the evidence for clinical applications and presented a report with recommendations at the 2015 ISCD Position Development Conference. Here we discuss the agreed upon ISCD official positions with supporting medical evidence, rationale, controversy, and suggestions for further study. Parts I and III address the clinical use of QCT of the hip, and the clinical feasibility of existing techniques for opportunistic screening of osteoporosis using CT scans obtained for other diagnosis such as colonography was addressed.
Resumo:
OBJECTIVE The first description of the simplified acute physiology score (SAPS) II dates back to 1993, but little is known about its accuracy in daily practice. Our purpose was to evaluate the accuracy of scoring and the factors that affect it in a nationwide survey. METHODS Twenty clinical scenarios, covering a broad range of illness severities, were randomly assigned to a convenience sample of physicians or nurses in Swiss adult intensive care units (ICUs), who were asked to assess the SAPS II score for a single scenario. These data were compared to a reference that was defined by five experienced researchers. The results were cross-matched with demographic characteristics and data on the training and quality control for the scoring, structural and organisational properties of each participating ICU. RESULTS A total of 345 caregivers from 53 adult ICU providers completed the SAPS II evaluation of one clinical scenario. The mean SAPS II scoring was 42.6 ± 23.4, with a bias of +5.74 (95%CI 2.0-9.5) compared to the reference score. There was no evidence of bias variation according to the case severity, ICU size, linguistic area, profession (physician vs. nurse), experience, initial SAPS II training, or presence of a quality control system. CONCLUSION This nationwide survey revealed substantial variability in the SAPS II scoring results. On average, SAPS II scoring was overestimated by more than 13%, irrespective of the profession or experience of the scorer or of the structural characteristics of the ICUs.
Resumo:
An analysis of earlier measurements and author's data serves as a basis for a discussion of origin of deep-sea hydrogen. High hydrogen concentrations (0.001 ml/l or higher) in geothermal brines of the Atlantis II Deep depression are of abiogenic origin.
Resumo:
Intercontinental Ballistic Missiles are capable of placing a nuclear warhead at more than 5,000 km away from its launching base. With the lethal power of a nuclear warhead a whole city could be wiped out by a single weapon causing millions of deaths. This means that the threat posed to any country from a single ICBM captured by a terrorist group or launched by a 'rogue' state is huge. This threat is increasing as more countries are achieving nuclear and advanced launcher capabilities. In order to suppress or at least reduce this threat the United States created the National Missile Defense System which involved, among other systems, the development of long-range interceptors whose aim is to destroy incoming ballistic missiles in their midcourse phase. The Ballistic Missile Defense is a high-profile topic that has been the focus of political controversy lately when the U.S. decided to expand the Ballistic Missile system to Europe, with the opposition of Russia. However the technical characteristics of this system are mostly unknown by the general public. The Interception of an ICBM using a long range Interceptor Missile as intended within the Ground-Based Missile Defense System by the American National Missile Defense (NMD) implies a series of problems of incredible complexity: - The incoming missile has to be detected almost immediately after launch. - The incoming missile has to be tracked along its trajectory with a great accuracy. - The Interceptor Missile has to implement a fast and accurate guidance algorithm in order to reach the incoming missile as soon as possible. - The Kinetic Kill Vehicle deployed by the interceptor boost vehicle has to be able to detect the reentry vehicle once it has been deployed by ICBM, when it offers a very low infrared signature, in order to perform a final rendezvous manoeuvre. - The Kinetic Kill Vehicle has to be able to discriminate the reentry vehicle from the surrounding debris and decoys. - The Kinetic Kill Vehicle has to be able to implement an accurate guidance algorithm in order to perform a kinetic interception (direct collision) of the reentry vehicle, at relative speeds of more than 10 km/s. All these problems are being dealt simultaneously by the Ground-Based Missile Defense System that is developing very complex and expensive sensors, communications and control centers and long-range interceptors (Ground-Based Interceptor Missile) including a Kinetic Kill Vehicle. Among all the technical challenges involved in this interception scenario, this thesis focuses on the algorithms required for the guidance of the Interceptor Missile and the Kinetic Kill Vehicle in order to perform the direct collision with the ICBM. The involved guidance algorithms are deeply analysed in this thesis in part III where conventional guidance strategies are reviewed and optimal guidance algorithms are developed for this interception problem. The generation of a realistic simulation of the interception scenario between an ICBM and a Ground Based Interceptor designed to destroy it was considered as necessary in order to be able to compare different guidance strategies with meaningful results. As a consequence, a highly representative simulator for an ICBM and a Kill Vehicle has been implemented, as detailed in part II, and the generation of these simulators has also become one of the purposes of this thesis. In summary, the main purposes of this thesis are: - To develop a highly representative simulator of an interception scenario between an ICBM and a Kill Vehicle launched from a Ground Based Interceptor. -To analyse the main existing guidance algorithms both for the ascent phase and the terminal phase of the missiles. Novel conclusions of these analyses are obtained. - To develop original optimal guidance algorithms for the interception problem. - To compare the results obtained using the different guidance strategies, assess the behaviour of the optimal guidance algorithms, and analyse the feasibility of the Ballistic Missile Defense system in terms of guidance (part IV). As a secondary objective, a general overview of the state of the art in terms of ballistic missiles and anti-ballistic missile defence is provided (part I).
Resumo:
Helper T cells are triggered by molecular complexes of antigenic peptides and class II proteins of the major histocompatibility complex . The formation of stable complexes between class II major histocompatibility complex proteins and antigenic peptides is often accompanied by the formation of a short-lived complex. In this report, we describe T cell recognition of two distinct complexes, one short-lived and the other long-lived, formed during the binding of an altered myelin basic protein peptide to I-Ak. One myelin basic protein-specific T cell clone is triggered by only the short-lived complex, and another is triggered by only the stable complex. Thus, a single peptide bound to a particular class II molecule can activate different T cells depending on the conditions of the binding reaction.
Resumo:
An isoform of the mammalian renal type II Na/Pi-cotransporter is described. Homology of this isoform to described mammalian and nonmammalian type II cotransporters is between 57 and 75%. Based on major diversities at the C terminus, the new isoform is designed as type IIb Na/Pi-cotransporter. Na/Pi-cotransport mediated by the type IIb cotransporter was studied in oocytes of Xenopus laevis. The results indicate that type IIb Na/Pi-cotransport is electrogenic and in contrast to the renal type II isoform of opposite pH dependence. Expression of type IIb mRNA was detected in various tissues, including small intestine. The type IIb protein was detected as a 108-kDa protein by Western blots using isolated small intestinal brush border membranes and by immunohistochemistry was localized at the luminal membrane of mouse enterocytes. Expression of the type IIb protein in the brush borders of enterocytes and transport characteristics suggest that the described type IIb Na/Pi-cotransporter represents a candidate for small intestinal apical Na/Pi-cotransport.
Resumo:
Superoxide anion (O2−) plays a key role in the endogenous suppression of endothelium-derived nitric oxide (NO) bioactivity and has been implicated in the development of hypertension. In previous studies, we found that O2− is produced predominantly in the adventitia of isolated rabbit aorta and acts as a barrier to NO. In the present studies, we characterize the enzyme responsible for O2− production in the adventitia and show that this enzyme is a constitutively active NADPH oxidase with similar composition as the phagocyte NADPH oxidase. Constitutive O2−-generating activity was localized to aortic adventitial fibroblasts and was enhanced by the potent vasoconstrictor angiotensin II. Immunohistochemistry of aortic sections demonstrated the presence of p22phox, gp91phox, p47phox, and p67phox localized exclusively in rabbit aortic adventitia, coincident with the site of staining for O2− production. Furthermore, immunodepletion of p67phox from adventitial fibroblast particulates resulted in the loss of NADPH oxidase activity, which could be restored by the addition of recombinant p67phox. Further study into the regulation of this adventitial source of O2− is important in elucidating the mechanisms regulating the bioactivity of NO and may contribute to our understanding of the pathogenesis of hypertension.
Resumo:
Class I and class II molecules of the major histocompatibility complex present peptides to T cells. Class I molecules bind peptides that have been generated in the cytosol by proteasomes and delivered into the endoplasmic reticulum by the transporter associated with antigen presentation. In contrast, class II molecules are very efficient in the presentation of antigens that have been internalized and processed in endosomal/lysosomal compartments. In addition, class II molecules can present some cytosolic antigens by a TAP-independent pathway. To test whether this endogenous class II presentation pathway was linked to proteasome-mediated degradation of antigen in the cytosol, the N-end rule was utilized to produce two forms of the influenza virus matrix protein with different in vivo half-lives (10 min vs. 5 h) when expressed in human B cells. Whereas class I molecules presented both the short- and the long-lived matrix proteins, class II molecules presented exclusively the long-lived form of antigen. Thus, rapid degradation of matrix protein in the cytosol precluded its presentation by class II molecules. These data suggest that the turnover of long-lived cytosolic proteins, some of which is mediated by delivery into endosomal/lysosomal compartments, provides a mechanism for immune surveillance by CD4+ T cells.