993 resultados para Neuronal signal modeling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural selection is typically exerted at some specific life stages. If natural selection takes place before a trait can be measured, using conventional models can cause wrong inference about population parameters. When the missing data process relates to the trait of interest, a valid inference requires explicit modeling of the missing process. We propose a joint modeling approach, a shared parameter model, to account for nonrandom missing data. It consists of an animal model for the phenotypic data and a logistic model for the missing process, linked by the additive genetic effects. A Bayesian approach is taken and inference is made using integrated nested Laplace approximations. From a simulation study we find that wrongly assuming that missing data are missing at random can result in severely biased estimates of additive genetic variance. Using real data from a wild population of Swiss barn owls Tyto alba, our model indicates that the missing individuals would display large black spots; and we conclude that genes affecting this trait are already under selection before it is expressed. Our model is a tool to correctly estimate the magnitude of both natural selection and additive genetic variance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Very large subsidence, with up to 20 km thick sediment layers, is observed in the East Barents Sea basin. Subsidence started in early Paleozoic, accelerated in Permo-Triassic times, finished during the middle Cretaceous, and was followed by moderate uplift in Cenozoic times. The observed gravity signal suggests that the East Barents Sea is at present in isostatic balance and indicates that a mass excess is required in the lithosphere to produce the observed large subsidence. Several origins have been proposed for the mass excess. We use 1-D thermokinematic modeling and 2-D isostatic density models of continental lithosphere to evaluate these competing hypotheses. The crustal density in 2-D thermokinematic models resulting from pressure-, temperature-, and composition-dependent phase change models is computed along transects crossing the East Barents Sea. The results indicate the following. (1) Extension can only explain the observed subsidence provided that a 10 km thick serpentinized mantle lens beneath the basin center is present. We conclude that this is unlikely given that this highly serpentinized layer should be formed below a sedimentary basin with more than 10 km of sediments and crust at least 10 km thick. (2) Phase changes in a compositionally homogeneous crust do not provide enough mass excess to explain the present-day basin geometry. (3) Phase change induced densification of a preexisting lower crustal gabbroic body, interpreted as a mafic magmatic underplate, can explain the basin geometry and observed gravity anomalies. The following model is proposed for the formation of the East Barents Sea basin: (1) Devonian rifting and extension related magmatism resulted in moderate thinning of the crust and a mafic underplate below the central basin area explaining initial late Paleozoic subsidence. (2) East-west shortening during the Permian and Triassic resulted in densification of the previously emplaced mafic underplated body and enhanced subsidence dramatically, explaining the present-day deep basin geometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MOTIVATION: Regulatory gene networks contain generic modules such as feedback loops that are essential for the regulation of many biological functions. The study of the stochastic mechanisms of gene regulation is instrumental for the understanding of how cells maintain their expression at levels commensurate with their biological role, as well as to engineer gene expression switches of appropriate behavior. The lack of precise knowledge on the steady-state distribution of gene expression requires the use of Gillespie algorithms and Monte-Carlo approximations. METHODOLOGY: In this study, we provide new exact formulas and efficient numerical algorithms for computing/modeling the steady-state of a class of self-regulated genes, and we use it to model/compute the stochastic expression of a gene of interest in an engineered network introduced in mammalian cells. The behavior of the genetic network is then analyzed experimentally in living cells. RESULTS: Stochastic models often reveal counter-intuitive experimental behaviors, and we find that this genetic architecture displays a unimodal behavior in mammalian cells, which was unexpected given its known bimodal response in unicellular organisms. We provide a molecular rationale for this behavior, and we implement it in the mathematical picture to explain the experimental results obtained from this network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pathogenesis of Schistosoma mansoni infection is largely determined by host T-cell mediated immune responses such as the granulomatous response to tissue deposited eggs and subsequent fibrosis. The major egg antigens have a valuable role in desensitizing the CD4+ Th cells that mediate granuloma formation, which may prevent or ameliorate clinical signs of schistosomiasis.S. mansoni major egg antigen Smp40 was expressed and completely purified. It was found that the expressed Smp40 reacts specifically with anti-Smp40 monoclonal antibody in Western blotting. Three-dimensional structure was elucidated based on the similarity of Smp40 with the small heat shock protein coded in the protein database as 1SHS as a template in the molecular modeling. It was figured out that the C-terminal of the Smp40 protein (residues 130 onward) contains two alpha crystallin domains. The fold consists of eight beta strands sandwiched in two sheets forming Greek key. The purified Smp40 was used for in vitro stimulation of peripheral blood mononuclear cells from patients infected with S. mansoni using phytohemagglutinin mitogen as a positive control. The obtained results showed that there is no statistical difference in interferon-g, interleukin (IL)-4 and IL-13 levels obtained with Smp40 stimulation compared with the control group (P > 0.05 for each). On the other hand, there were significant differences after Smp40 stimulation in IL-5 (P = 0.006) and IL-10 levels (P < 0.001) compared with the control group. Gaining the knowledge by reviewing the literature, it was found that the overall pattern of cytokine profile obtained with Smp40 stimulation is reported to be associated with reduced collagen deposition, decreased fibrosis, and granuloma formation inhibition. This may reflect its future prospect as a leading anti-pathology schistosomal vaccine candidate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Queens and workers in social insect colonies can differ in reproductive goals such as colony-level sex allocation and production of males by workers. That the presence of queen(s) often seems to affect worker behaviour in situations of potential conflict has given rise to the idea of queen control over reproduction. In small colonies queen control is possible via direct aggression against workers, but in large colonies queens cannot be effectively aggressive towards all the workers. This, plus evidence that queen-produced chemicals affect worker behaviour, has led to the conclusion that physical intimidation has been replaced by pheromonal queen control, whereby queen(s) chemically manipulate workers into behaving in ways that increase the queen's fitness at the worker's expense. It is argued in this paper, however, that pheromonal queen control has never conclusively been demonstrated and is evolutionarily difficult to justify. Proposed examples of pheromonal control are more likely to be honest signals, with workers' responses increasing their own inclusive fitness. A series of experimental and field studies in which positive results would give prima facie evidence for pheromonal queen control is suggested. Finally, three terms are defined: (1) pheromonal queen control for workers or subordinate queens being chemically manipulated into acting against their own best interests; (2) pheromonal queen signal for situations where workers or subordinate queens react to queen pheromones in ways that increase their, and possibly the queens', inclusive fitness; and (3) pheromonal queen effect where changes in the workers' or subordinate queens' behaviour have an unknown consequence on their inclusive fitness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a previous study, the Schistosoma mansoni Rho1 protein was able to complement Rho1 null mutant Saccharomyces cerevisiae cells at restrictive temperatures and under osmotic stress (low calcium concentration) better than the human homologue (RhoA). It is known that under osmotic stress, the S. cerevisiae Rho1 triggers two distinct pathways: activation of the membrane 1,3-beta-glucan synthase enzymatic complex and activation of the protein kinase C1 signal transduction pathway, promoting the transcription of response genes. In the present work the SmRho1 protein and its mutants smrho1E97P, smrho1L101T, and smrho1E97P, L101T were used to try to clarify the basis for the differential complementation of Rho1 knockout yeast strain by the human and S. mansoni genes. Experiments of functional complementation in the presence of caffeine and in the presence of the osmotic regulator sorbitol were conducted. SmRho1 and its mutants showed a differential complementation of the yeast cells in the presence of caffeine, since smrho1E97P and smrho1E97P, L101T mutants showed a delay in the growth when compared to the yeast complemented with the wild type SmRho1. However, in the presence of sorbitol and caffeine the wild type SmRho1 and mutants showed a similar complementation phenotype, as they allowed yeast growth in all caffeine concentrations tested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myocardial infarction (MI) induces a sterile inflammatory response that contributes to adverse cardiac remodeling. The initiating mechanisms of this response remain incompletely defined. We found that necrotic cardiomyocytes released a heat-labile proinflammatory signal activating MAPKs and NF-κB in cardiac fibroblasts, with secondary production of cytokines. This response was abolished in Myd88(-/-) fibroblasts but was unaffected in nlrp3-deficient fibroblasts. Despite MyD88 dependency, the response was TLR independent, as explored in TLR reporter cells, pointing to a contribution of the IL-1 pathway. Indeed, necrotic cardiomyocytes released IL-1α, but not IL-1β, and the immune activation of cardiac fibroblasts was abrogated by an IL-1R antagonist and an IL-1α-blocking Ab. Moreover, immune responses triggered by necrotic Il1a(-/-) cardiomyocytes were markedly reduced. In vivo, mice exposed to MI released IL-1α in the plasma, and postischemic inflammation was attenuated in Il1a(-/-) mice. Thus, our findings identify IL-1α as a crucial early danger signal triggering post-MI inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pulse wave velocity (PWV) is a surrogate of arterial stiffness and represents a non-invasive marker of cardiovascular risk. The non-invasive measurement of PWV requires tracking the arrival time of pressure pulses recorded in vivo, commonly referred to as pulse arrival time (PAT). In the state of the art, PAT is estimated by identifying a characteristic point of the pressure pulse waveform. This paper demonstrates that for ambulatory scenarios, where signal-to-noise ratios are below 10 dB, the performance in terms of repeatability of PAT measurements through characteristic points identification degrades drastically. Hence, we introduce a novel family of PAT estimators based on the parametric modeling of the anacrotic phase of a pressure pulse. In particular, we propose a parametric PAT estimator (TANH) that depicts high correlation with the Complior(R) characteristic point D1 (CC = 0.99), increases noise robustness and reduces by a five-fold factor the number of heartbeats required to obtain reliable PAT measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé françaisLa majorité des organismes vivants sont soumis à l'alternance du jour et de la nuit, conséquence de la rotation de la terre autour de son axe. Ils ont développé un système interne de mesure du temps, appelé horloge circadienne, leur permettant de s'adapter et de synchroniser leur comportement et leur physiologie aux cycles de lumière. Cette dernière est considérée comme étant le signal majeur entraînant l'horloge interne et. par conséquent, les rythmes journaliers d'éveil et de sommeil. Outre sa régulation circadienne, le sommeil est contrôlé par un processus homéostatique qui détermine son besoin. La contribution de ces deux processus dans le fonctionnement cellulaire du cerveau n'a pas encore été investiguée. La mesure de l'amplitude ainsi que de la prévalence des ondes delta de l'EEG (activité delta) constitue un index très fiable du besoin de sommeil. Il a été démontré que cette activité est génétiquement déterminée et associée à un locus de trait quantitatif situé sur le chromosome 13 de la souris.Grâce à des expériences de privation de sommeil et d'analyses de transcriptome du cerveau dans trois souches de souris présentant diverses réponses à la privation de sommeil, nous avons trouvé que Homerla, localisé dans la région d'intérêt du chromosome 13, est le meilleur marqueur du besoin de sommeil. Homerla est impliqué dans la récupération de l'hyperactivité neuronale induite par le glutamate, grâce à son effet tampon sur le calcium intracellulaire. Une fonction fondamentale du sommeil pourrait donc être de protéger le cerveau et de lui permettre de récupérer après une hyperactivité neuronale imposée par une veille prolongée.De plus, nous avons montré que 2032 transcrits sont exprimés rythmiqueraent dans le cerveau de la souris, parmi lesquels seulement 391 le restent après que les animaux aient été privés de sommeil à différents moments au cours des 24 heures. Cette observation montre clairement que la plupart des changements rythmiques au niveau du transcriptome dépendent du sommeil et non de l'horloge circadienne et souligne ainsi l'importance du sommeil dans la physiologie des mammifères.La plupart des expériences concernant les rythmes circadiens ont été réalisées sur des individus isolés en négligeant l'effet du contexte social sur les comportements circadiens. Les espèces sociales, telles que les fourmis, se caractérisent par une division du travail où une répartition des tâches s'effectue entre ses membres. De plus, certaines d'entre elles doivent être pratiquées en continu comme les soins au couvain tandis que d'autres requièrent une activité rythmique comme le fourragement. Ainsi la fourmi est un excellent modèle pour l'étude de 1 influence du contexte social sur les rythmes circadiens.A ces fins, nous avons décidé d'étudier les rythmes circadiens chez une espèce de fourmi Camponotus fellah et de caractériser au niveau moléculaire son horloge circadienne. Nous avons ainsi développé un système vidéo permettant de suivre l'activité locomotrice de tous les individus d'une colonie. Nos résultats montrent que, bien que la plupart des fourmis soient arythmiques à l'intérieur de la colonie, elles développent d'amples rythmes d'activité en isolation. De plus, ces rythmes disparaissent presque aussitôt que la fourmi est réintroduite dans la colonie. Cette rythmicité observée en isolation semble être générée par l'horloge circadienne car elle persiste en condition constante (obscurité totale). Nous avons ensuite regardé si cette apparente arythmie observée dans la colonie résultait d'un effet masquant des interactions sociales sur les rythmes circadiens d'activité. Nos résultats suggèrent que l'horloge interne est fonctionnelle dans la colonie mais que l'expression de ses rythmes au niveau comportemental est inhibée par les interactions sociales. Les analyses moléculaires du statut de l'horloge dans différents contextes sociaux sont actuellement en cours. Le contexte social semble donc un déterminant majeur du comportement circadien chez la fourmi.AbstractAlmost all living organisms on earth are subjected to the alternance of day and night re-sulting from the rotation of the earth around its axis. They have evolved with an internal timing system, termed the circadian clock, enabling them to adapt and synchronize their behavior and physiology to the daily changes in light and related environmental parame¬ters. Light is thought to be the major cue entraining the circadian clock and consequently the rhythms of rest/activity. In addition to its circadian dependent timing, sleep is reg¬ulated by a homeostatic process that determines its need. The contribution of these two processes in the cellular functioning of the brain has not yet been considered. A highly reliable index of the homeostatic process of sleep is the measure of the amplitude and prevalence of the EEG delta waves (delta activity). It has been shown that sleep need, measured by delta activity, is genetically determined and associated with a Quantitative Trait Locus (QTL) located on the mouse chromosome 13. By using sleep deprivation and brain transcriptome profiling in three inbred mouse strains showing different responses to sleep loss, we found that Homerla, localized within this QTL region is the best transcrip¬tional marker of sleep need. Interestingly Homerla is primarily involved in the recovery from glutamate-induced neuronal hyperactivity by its buffering effect on intracellular cal¬cium. A fundamental function of sleep may therefore reside in the protection and recovery of the brain from a neuronal hyperactivity imposed by prolonged wakefulness.Moreover, time course gene expression experiments showed that 2032 brain tran¬scripts present a rhythmic variation, but only 391 of those remain rhythmic when mice are sleep deprived at four time points around the clock. This finding clearly suggests that most changes in gene transcription over the day are sleep-wake dependent rather than clock dependent and underlines the importance of sleep in mammalian physiology.In the second part of this PhD, I was interested in the social influence on circadian behavior. Most experiments done in the circadian field have been performed on isolated individuals and have therefore ignored the effect of the social context on circadian behav-ior. Eusocial insect species such as ants are characterized by a division of labor: colony tasks are distributed among individuals, some of them requiring continuous activity such as nursing or rhythmic ones such as foraging. Thus ants represent a suitable model to study the influence of the social context on the circadian clock and its output rhythms.The aim of this part was to address the effect of social context on circadian rhythms in the ant species Camponotus fellah and to characterize its circadian clock at the molecu¬lar level. We therefore developed a video tracking system to follow the locomotor activity of all individuals in a colony. Our results show that most ants are arrhythmic within the colony, but develop, when subjected to social isolation, strong rhythms of activity that intriguingly disappear when individuals are reintroduced into the colony. The rhythmicity observed in isolated ants seems to be driven by the circadian clock as it persists under constant conditions (complete darkness). We then tested whether the apparent arrhyth- micity in the colony stemmed from a masking effect of social interactions on circadian rhythms. Indeed, we found that circadian clocks of ants in the colony are functional but their expression at the behavioral level is inhibited by social interactions. The molecular assessment of the circadian clock functional state in the different social context is still under investigation. Our results suggest that social context is a major determinant of circadian behavior in ants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Observations in daily practice are sometimes registered as positive values larger then a given threshold α. The sample space is in this case the interval (α,+∞), α & 0, which can be structured as a real Euclidean space in different ways. This fact opens the door to alternative statistical models depending not only on the assumed distribution function, but also on the metric which is considered as appropriate, i.e. the way differences are measured, and thus variability

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is a first draft of the principle of statistical modelling on coordinates. Several causes —which would be long to detail—have led to this situation close to the deadline for submitting papers to CODAWORK’03. The main of them is the fast development of the approach along thelast months, which let appear previous drafts as obsolete. The present paper contains the essential parts of the state of the art of this approach from my point of view. I would like to acknowledge many clarifying discussions with the group of people working in this field in Girona, Barcelona, Carrick Castle, Firenze, Berlin, G¨ottingen, and Freiberg. They have given a lot of suggestions and ideas. Nevertheless, there might be still errors or unclear aspects which are exclusively my fault. I hope this contribution serves as a basis for further discussions and new developments

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Astrocytes actively participate in synaptic integration by releasing transmitter (glutamate) via a calcium-regulated, exocytosis-like process. Here we show that this process follows activation of the receptor CXCR4 by the chemokine stromal cell-derived factor 1 (SDF-1). An extraordinary feature of the ensuing signaling cascade is the rapid extracellular release of tumor necrosis factor-alpha (TNFalpha). Autocrine/paracrine TNFalpha-dependent signaling leading to prostaglandin (PG) formation not only controls glutamate release and astrocyte communication, but also causes their derangement when activated microglia cooperate to dramatically enhance release of the cytokine in response to CXCR4 stimulation. We demonstrate that altered glial communication has direct neuropathological consequences and that agents interfering with CXCR4-dependent astrocyte-microglia signaling prevent neuronal apoptosis induced by the HIV-1 coat glycoprotein, gp120IIIB. Our results identify a new pathway for glia-glia and glia-neuron communication that is relevant to both normal brain function and neurodegenerative diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the context of the investigation of the use of automated fingerprint identification systems (AFIS) for the evaluation of fingerprint evidence, the current study presents investigations into the variability of scores from an AFIS system when fingermarks from a known donor are compared to fingerprints that are not from the same source. The ultimate goal is to propose a model, based on likelihood ratios, which allows the evaluation of mark-to-print comparisons. In particular, this model, through its use of AFIS technology, benefits from the possibility of using a large amount of data, as well as from an already built-in proximity measure, the AFIS score. More precisely, the numerator of the LR is obtained from scores issued from comparisons between impressions from the same source and showing the same minutia configuration. The denominator of the LR is obtained by extracting scores from comparisons of the questioned mark with a database of non-matching sources. This paper focuses solely on the assignment of the denominator of the LR. We refer to it by the generic term of between-finger variability. The issues addressed in this paper in relation to between-finger variability are the required sample size, the influence of the finger number and general pattern, as well as that of the number of minutiae included and their configuration on a given finger. Results show that reliable estimation of between-finger variability is feasible with 10,000 scores. These scores should come from the appropriate finger number/general pattern combination as defined by the mark. Furthermore, strategies of obtaining between-finger variability when these elements cannot be conclusively seen on the mark (and its position with respect to other marks for finger number) have been presented. These results immediately allow case-by-case estimation of the between-finger variability in an operational setting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neuronal monocarboxylate transporter, MCT2, is not only an energy substrate carrier but it is also purported to be a binding partner for the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor GluR2 subunit. To unravel a putative role of MCT2 in the regulation of GluR2 subcellular distribution, Neuro2A cells and primary cultures of mouse cortical neurons were co-transfected with plasmids containing sequences to express the fluorescent proteins mStrawberry (mStb)-fused MCT2 and Venus-fused GluR2. Subsequently, their subcellular distribution was visualized by fluorescence microscopy. GluR2 was led to form perinuclear and dendritic clusters together with MCT2 when co-transfected in Neuro2A cells or in neurons, following the original distribution of MCT2. MCT2 co-transfection had no effect on the intracellular distribution of several other post-synaptic proteins, although it partially affected the intracellular distribution of GluR1 similarly to GluR2. Both cell surface and total protein expression levels of GluR2 were significantly reduced by co-expression with MCT2. Finally, partial perinuclear and dendritic co-localization between MCT2 and Rab8, a member of the small GTPase family involved in membrane trafficking of AMPA receptors, was also observed in co-transfected neurons. These results suggest that MCT2 could influence AMPA receptor trafficking within neurons by modulating GluR2 sorting between different subcellular compartments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MOTIVATION: Understanding gene regulation in biological processes and modeling the robustness of underlying regulatory networks is an important problem that is currently being addressed by computational systems biologists. Lately, there has been a renewed interest in Boolean modeling techniques for gene regulatory networks (GRNs). However, due to their deterministic nature, it is often difficult to identify whether these modeling approaches are robust to the addition of stochastic noise that is widespread in gene regulatory processes. Stochasticity in Boolean models of GRNs has been addressed relatively sparingly in the past, mainly by flipping the expression of genes between different expression levels with a predefined probability. This stochasticity in nodes (SIN) model leads to over representation of noise in GRNs and hence non-correspondence with biological observations. RESULTS: In this article, we introduce the stochasticity in functions (SIF) model for simulating stochasticity in Boolean models of GRNs. By providing biological motivation behind the use of the SIF model and applying it to the T-helper and T-cell activation networks, we show that the SIF model provides more biologically robust results than the existing SIN model of stochasticity in GRNs. AVAILABILITY: Algorithms are made available under our Boolean modeling toolbox, GenYsis. The software binaries can be downloaded from http://si2.epfl.ch/ approximately garg/genysis.html.