800 resultados para National Health Service Corps (U.S.)
Resumo:
Lionfish (Pterois volitans/miles complex) are venomous coral reef fishes from the Indian and western Pacific oceans that are now found in the western Atlantic Ocean. Adult lionfish have been observed from Miami, Florida to Cape Hatteras, North Carolina, and juvenile lionfish have been observed off North Carolina, New York, and Bermuda. The large number of adults observed and the occurrence of juveniles indicate that lionfish are established and reproducing along the southeast United States coast. Introductions of marine species occur in many ways. Ballast water discharge, a very common method of introduction for marine invertebrates, is responsible for many freshwater fish introductions. In contrast, most marine fish introductions result from intentional stocking for fishery purposes. Lionfish, however, likely were introduced via unintentional or intentional aquarium releases, and the introduction of lionfish into United States waters should lead to an assessment of the threat posed by the aquarium trade as a vector for fish introductions. Currently, no management actions are being taken to limit the effect of lionfish on the southeast United States continental shelf ecosystem. Further, only limited funds have been made available for research. Nevertheless, the extent of the introduction has been documented and a forecast of the maximum potential spread of lionfish is being developed. Under a scenario of no management actions and limited research, three predictions are made: ● With no action, the lionfish population will continue to grow along the southeast United States shelf. ● Effects on the marine ecosystem of the southeast United States will become more noticeable as the lionfish population grows. ● There will be incidents of lionfish envenomations of divers and/or fishers along the east coast of the United States. Removing lionfish from the southeast United States continental shelf ecosystem would be expensive and likely impossible. A bounty could be established that would encourage the removal of fish and provide specimens for research. However, the bounty would need to be lower than the price of fish in the aquarium trade (~$25-$50 each) to ensure that captured specimens were from the wild. Such a low bounty may not provide enough incentive for capturing lionfish in the wild. Further, such action would only increase the interaction between the public and lionfish, increasing the risk of lionfish envenomations. As the introduction of lionfish is very likely irreversible, future actions should focus on five areas. 1) The population of lionfish should be tracked. 2) Research should be conducted so that scientists can make better predictions regarding the status of the invasion and the effects on native species, ecosystem function, and ecosystem services. 3) Outreach and education efforts must be increased, both specifically toward lionfish and more generally toward the aquarium trade as a method of fish introductions. 4) Additional regulation should be considered to reduce the frequency of marine fish introduction into U.S. waters. However, the issue is more complicated than simply limiting the import of non-native species, and these complexities need to be considered simultaneously. 5) Health care providers along the east coast of the United States need to be notified that a venomous fish is now resident along the southeast United States. The introduction and spread of lionfish illustrates the difficulty inherent in managing introduced species in marine systems. Introduced species often spread via natural mechanisms after the initial introduction. Efforts to control the introduction of marine fish will fail if managers do not consider the natural dispersal of a species following an introduction. Thus, management strategies limiting marine fish introductions need to be applied over the scale of natural ecological dispersal to be effective, pointing to the need for a regional management approach defined by natural processes not by political boundaries. The introduction and success of lionfish along the east coast should change the long-held perception that marine fish invasions are a minimal threat to marine ecosystems. Research is needed to determine the effects of specific invasive fish species in specific ecosystems. More broadly, a cohesive plan is needed to manage, mitigate and minimize the effects of marine invasive fish species on ecosystems that are already compromised by other human activities. Presently, the magnitude of marine fish introductions as a stressor on marine ecosystems cannot be quantified, but can no longer be dismissed as negligible. (PDF contains 31 pages)
Resumo:
Navassa is a small, undeveloped island in the Windward Passage between Jamaica and Haiti. It was designated a National Wildlife Refuge under the jurisdiction of the U.S. Fish and Wildlife Service in 1999, but the remote location makes management and enforcement challenging, and the area is regularly fished by artisanal fishermen from Haiti. In April 2006, the NOAA Center for Coastal Fisheries and Habitat Research conducted a research cruise to Navassa. The cruise produced the first high-resolution multibeam bathymetry for the area, which will facilitate habitat mapping and assist in refuge management. A major emphasis of the cruise was to study the impact of Haitian fishing gear on benthic habitats and fish communities; however, in 10 days on station only one small boat was observed with five fishermen and seven traps. Fifteen monitoring stations were established to characterize fish and benthic communities along the deep (28-34 m) shelf, as these areas have been largely unstudied by previous cruises. The fish communities included numerous squirrelfishes, triggerfishes, and parrotfishes. Snappers and grouper were also present but no small individuals were observed. Similarly, conch surveys indicated the population was in low abundance and was heavily skewed towards adults. Analysis of the benthic photoquadrats is currently underway. Other cruise activities included installation of a temperature logger network, sample collection for stable isotope analyses to examine trophic structure, and drop camera surveys to ground-truth habitat maps and overhead imagery. (PDF contains 58 pages)
Resumo:
This document describes the analytical methods used to quantify core organic chemicals in tissue and sediment collected as part of NOAA’s National Status and Trends Program (NS&T) for the years 2000-2006. Organic contaminat analytical methods used during the early years of the program are described in NOAA Technical Memoranda NOS ORCA 71 and 130 (Lauenstein and Cantillo, 1993; Lauenstein and Cantillo, 1998) for the years 1984-1992 and 1993-1996, respectively. These reports are available from our website (http://www.ccma.nos.gov) The methods detailed in this document were utilized by the Mussel Watch Project and Bioeffects Project, which are both part of the NS&T program. The Mussel Watch Project has been monitoring contaminants in bivalves and sediments since 1986 and is the longest active national contaminant monitoring program operating in U.S. costal waters. Approximately 280 Mussel Watch sites are sampled on a biennial and decadal timescale for bivalve tissue and sediment respectively. Similarly, the Bioeffects Assessment Project began in 1986 to characterize estuaries and near coastal environs. Using the sediment quality triad approach that measures; (1) levels of contaminants in sediments, (2) incidence and severity of toxicity, and (3) benthic macrofaunal conmmunities, the Bioeffects Project describes the spatial extent of sediment toxicity. Contaminant assessment is a core function of both projects. These methods, while discussed here in the context of sediment and bivalve tissue, were also used with other matricies including: fish fillet, fish liver, nepheloid layer, and suspended particulate matter. The methods described herein are for the core organic contaminants monitored in the NS&T Program and include polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), butyltins, and organochlorines that have been analyzed consistently over the past 15-20 years. Organic contaminants such as dioxins, perfluoro compounds and polybrominated biphenyl ethers (PBDEs) were analyzed periodically in special studies of the NS&T Program and will be described in another document. All of the analytical techniques described in this document were used by B&B Laboratories, Inc, an affiliate of TDI-Brook International, Inc. in College Station, Texas under contract to NOAA. The NS&T Program uses a performance-based system approach to obtain the best possible data quality and comparability, and requires laboratories to demonstrate precision, accuracy, and sensitivity to ensure results-based performance goals and measures. (PDF contains 75 pages)
Resumo:
The 19th Annual Symposium on Sea Turtle Biology and Conservation was the largest to date. The beautiful venue was the South Padre Island Convention Centre on South Padre Island, Texas from March 2-6, 1999. Key features of the 19th were invited talks on the theme The Promise, the Pain, and the Progress of 50 years of Sea Turtle Research and Conservation, a mini-symposium on the Kemp's ridley and an increased emphasis on high quality poster sessions. Hosts for the meeting included Texas A&M University, the Texas Sea Grant College Program, The Gladys Porter Zoo and Sea Turtle, Inc. Co-sponsors included the National Marine Fisheries Service-Southeast Fisheries Science Center, the National Marine Fisheries Service-Protected Resources Branch, Padre Island National Seashore and the U.S. Fish and Wildlife Service. With the assistance of Jack Frazier, we were fortunate to obtain a $30,000 grant from the David and Lucile Packard Foundation. This grant provided travel support to 49 individuals from 24 nations who presented a total of 50 presentations. (PDF contains 309 pages)
Resumo:
This cruise report is a summary of a field survey conducted in coastal-ocean waters of the Mid-Atlantic Bight from Nags Head, North Carolina to Cape Cod, Massachusetts and from approximately 1 nautical mile (nm) of shore seaward to the shelf break (100 m). The survey was conducted May 12 - May 21, 2006 on NOAA Ship NANCY FOSTER Cruise NF-06-06-NCCOS. Multiple indicators of ecological condition were sampled synoptically at each of 49 stations throughout the region using a random probabilistic sampling design. Samples were collected for the analysis of benthic community structure and composition; concentrations of chemical contaminants (metals, pesticides, PAHs, PCBs, PBDEs) in sediments and target demersal biota; nutrient and chlorophyll levels in the water column; and other basic habitat characteristics such as depth, salinity, temperature, dissolved oxygen, pH, sediment grain size, and organic carbon content. The overall purpose of the survey was to collect data to assess the status of ecological condition in coastal-ocean waters of the region, based on these various indicators, and to provide this information as a baseline for determining how environmental conditions may be changing with time. The results will be of value in helping to broaden our understanding of the status of ecological resources and their controlling factors, including impacts of potential ecosystem stressors, in such strategic coastal areas. (18pp.) (PDF contains 24 pages)
Resumo:
Summary: The offshore shelf and canyon habitats of the OCNMS (Fig. 1) are areas of high primary productivity and biodiversity that support extensive groundfish fisheries. Recent acoustic surveys conducted in these waters have indicated the presence of hard-bottom substrates believed to harbor unique deep-sea coral and sponge assemblages. Such fauna are often associated with shallow tropical waters, however an increasing number of studies around the world have recorded them in deeper, cold-water habitats in both northern and southern latitudes. These habitats are of tremendous value as sites of recruitment for commercially important fishes. Yet, ironically, studies have shown how the gear used in offshore demersal fishing, as well as other commercial operations on the seafloor, can cause severe physical disturbances to resident benthic fauna. Due to their exposed structure, slow growth and recruitment rates, and long life spans, deep-sea corals and sponges may be especially vulnerable to such disturbances, requiring very long periods to recover. Potential effects of fishing and other commercial operations in such critical habitats, and the need to define appropriate strategies for the protection of these resources, have been identified as a high-priority management issue for the sanctuary. To begin addressing this issue, an initial pilot survey was conducted June 1-12, 2004 at six sites in offshore waters of the OCNMS (Fig. 2, average depths of 147-265 m) to explore for the presence of deep-sea coral/sponge assemblages and to look for evidence of potential anthropogenic impacts in these critical habitats. The survey was conducted on the NOAA Ship McARTHUR-II using the Navy’s Phantom DHD2+2 remotely operated vehicle (ROV), which was equipped with a video camera, lasers, and a manipulator arm for the collection of voucher specimens. At each site, a 0.1-m2 grab sampler also was used to collect samples of sediments for the analysis of macroinfauna (> 1.0 mm), total organic carbon (TOC), grain size, and chemical contaminants. Vertical profiles of salinity, dissolved oxygen (DO), temperature, and pressure were recorded at each site with a small SeaCat conductivity-temperature-depth (CTD) profiler. Niskin bottles attached to the CTD also obtained near-bottom water samples in support of a companion study of microbial indicators of coral health and general ecological condition across these sites. All samples except the sediment-contaminant samples are being analyzed with present project funds. Original cruise plans included a total of 12 candidate stations to investigate (Fig. 3). However, inclement weather and equipment failures restricted the sampling to half of these sites. In spite of the limited sampling, the work completed was sufficient to address key project objectives and included several significant scientific observations. Foremost, the cruise was successful in demonstrating the presence of target deepwater coral species in these waters. Patches of the rare stony coral Lophelia pertusa, more characteristic of deepwater coral/sponge assemblages in the North Atlantic, were observed for the first time in OCNMS at a site in 271 meters of water. A large proportion of these corals consisted of dead and broken skeletal remains, and a broken gorgonian (soft coral) also was observed nearby. The source of these disturbances is not known. However, observations from several sites included evidence of bottom trawl marks in the sediment and derelict fishing gear (long lines). Preliminary results also support the view that these areas are important reservoirs of marine biodiversity and of value as habitat for demersal fishes. For example, onboard examination of 18 bottom-sediment grabs revealed benthic infaunal species representative of 14 different invertebrate phyla. Twenty-eight species of fishes from 11 families, including 11 (possibly 12) species of ommercially important rockfishes, also were identified from ROV video footage. These initial discoveries have sparked considerable interests in follow-up studies to learn more about the spatial extent of these assemblages and magnitude of potential impacts from commercial-fishing and other anthropogenic activities in the area. It is essential to expand our knowledge of these deep-sea communities and their vulnerability to potential environmental risks in order to determine the most appropriate management strategies. The survey was conducted under a partnership between NOAA’s National Centers for Coastal Ocean Science (NCCOS) and National Marine Sanctuary Program (NMSP) and included scientists from NCCOS, OCNMS, and several other west-coast State, academic, private, and tribal research institutions (see Section 4 for a complete listing of participating scientists). (PDF contains 20 pages)
Resumo:
Inputs of toxic chemicals provide one of the major types of anthropogenic stress threatening our Nation's coastal and estuarine waters. To assess this threat, the National Oceanic and Atmospheric Administration's (NOAA’s) National Status and Trends (NS&T) Program Mussel Watch Project monitors the concentrations of more than 70 toxic chemicals in sediments and on the whole soft-parts of mussels and oysters at over 300 sites around the U.S. Twenty of the 25 designated areas that comprise NOAA's National Estuarine Research Reserve System (NERRS) have one or more Mussel Watch monitoring sites. Trace elements and organic contaminants were quantified including As, Ag, Cd, Cu, Hg, Ni, Pb, Zn, ΣPCBs, ΣPAHs, DDT and its metabolites, and butyltins. The Mussel Watch sites located in or near the 20 Reserves provide for both status and trends. Generally the Reserves have trace element and organic contaminant concentrations that are at or below the median concentration determined for all NS&T Mussel Watch monitoring data. Trends were derived using the Spearman-rank correlation coefficient. It was possible to determine if trends exist for sites at which six or more years of data are available. Generally no trends were found for trace elements but when trends were found they were usually decreasing. The same general conclusion holds for organic contaminants but more decreasing trends were found than for trace elements. The greatest number of decreasing trends were found for tributyltin and its metabolites. (PDF contains 203 pages)
Resumo:
Fish were collected weekly in Biscayne Bay using a monofilament gill net set from a small skiff during 20-30 minute intervals. Although weekly sampling took place for 2.5 years, only the data from samples collected from June 1976 to June 1977 were used in this document. Abnormal external conditions of fins and body were observed on each fish and recorded. Fish were returned immediately to their habitats. Fish collected in the time period for this study numbered 3,765 and included 32 species. Of these, 16 species, totaling 3,556 fish, were caught in sufficient numbers (20 or more) to warrant data analysis. Only 3 of the 16 species could be considered relatively unafflicted: Aetobatus narinari (spotted eagle ray), Diodon hystrix (porcupinefish), and Selene vomer (lookdown). More than 80% of the examined specimens of these three species were unaffected. Less than 20% of the specimens of Diapterus plumieri (striped mojarra), Micropogonias undulatus (Atlantic croaker), and Pogonias cromis (black drum) displayed normal conditions. The three most afflicted species were Diapterus plumieri, striped mojarra; Micropogonias undulatus, Atlantic croaker; and Pogonias cromis, black drum. Only 7, 3, and 7% respectively showed no external evidence of disease. Data described in this document were originally tabulated in the mid-1970s, remained unpublished, and are no longer available. This document was based on archived unpublished text, a data summary table, and figures. Most of the text and cited references were the ones used in the original manuscript and no attempt was made to update them. (PDF contains 44 pages)
Resumo:
This document represents a pilot effort to map social change in the coastal United States—a social atlas characterizing changing population, demographic, housing, and economic attributes. This pilot effort focuses on coastal North Carolina. The impetus for this project came from numerous discussions about the usefulness and need for a graphic representation of social change information for U.S. coastal regions. Although the information presented here will be of interest to a broad segment of the coastal community and general public, the intended target audience is coastal natural resource management professionals, Sea Grant Extension staff, urban and regional land-use planners, environmental educators, and other allied constituents interested in the social aspects of how the nation’s coasts are changing. This document has three sections. The first section provides background information about the project. The second section features descriptions of social indicators and depictions of social indicator data for 1970, 1980, 1990, and 2000, and changes from 1970 to 2000 for all North Carolina coastal counties. The third section contains three case studies describing changes in select social attributes for subsets of counties. (PDF contains 67 pages)
Resumo:
Analyses of blood and liver samples from live captured sea otters and liver samples from beachcast sea otter carcasses off the remote Washington coast indicate relatively low exposure to contaminants, but suggest that even at the low levels measured, exposure may be indicated by biomarker response. Evidence of pathogen exposure is noteworthy - infectious disease presents a potential risk to Washington sea otters, particularly due to their small population size and limited distribution. During 2001 and 2002, 32 sea otters were captured, of which 28 were implanted with transmitters to track their movements and liver and blood samples were collected to evaluate contaminant and pathogen exposure. In addition, liver samples from fifteen beachcast animals that washed ashore between 1991 and 2002 were analyzed to provide historical information and a basis of reference for values obtained from live otters. The results indicate low levels of metals, butyltins, and organochlorine compounds in the blood samples, with many of the organochlorines not detected except polychlorinated biphenyls (PCBs), and a few aromatic hydrocarbons detected in the liver of the live captured animals. Aliphatic hydrocarbons were measurable in the liver from the live captured animals; however, some of these are likely from biogenic sources. A significant reduction of vitamin A storage in the liver was observed in relation to PCB, dibutyltin and octacosane concentration. A significant and strong positive correlation in vitamin A storage in the liver was observed for cadmium and several of the aliphatic hydrocarbons. Peripheral blood mononuclear cell (PBMC) cytochrome P450 induction was elevated in two of 16 animals and may be potentially related to aliphatic and aromatic hydrocarbon exposure. Mean concentration of total butyltin in the liver of the Washington beach-cast otters was more than 15 times lower than the mean concentration reported by Kannan et al. (1998) for Southern sea otters in California. Organochlorine compounds were evident in the liver of beach-cast animals, despite the lack of large human population centers and development along the Washington coast. Concentrations of PCBs and chlordanes (e.g., transchlordane, cis-chlordane, trans-nonachlor, cis-nonachlor and oxychlordane) in liver of Washington beach-cast sea otters were similar to those measured in Aleutian and California sea otters, excluding those from Monterey Bay, which were higher. Mean concentrations of 1,1,1,- trichloro-2,2-bis(p-chlorophyenyl)ethanes (DDTs) were lower, and mean concentrations of cyclohexanes (HCH, e.g., alpha BHC, beta BHC, delta BHC and gamma BHC) were slightly higher in Washington beach-cast otters versus those from California and the Aleutians. Epidemiologically, blood tests revealed that 80 percent of the otters tested positive for morbillivirus and 60 percent for Toxoplasma, the latter of which has been a significant cause of mortality in Southern sea otters in California. This is the first finding of positive morbillivirus titers in sea otters from the Northeast Pacific. Individual deaths may occur from these diseases, perhaps more so when animals are otherwise immuno-compromised or infected with multiple diseases, but a population-threatening die-off from these diseases singly is unlikely while population immunity remains high. The high frequency of detection of morbillivirus and Toxoplasma in the live otters corresponds well with the cause of death of stranded Washington sea otters reported herein, which has generally been attributable to infectious disease. Washington’s sea otter population continues to grow, with over 1100 animals currently inhabiting Washington waters; however, the rate of growth has slowed over recent years. The population has a limited distribution and has not yet reached its carrying capacity and as such, is still considered at high risk to catastrophic events. (PDF contains 189 pages)
Resumo:
This research is part of the Socioeconomic Research & Monitoring Program for the Florida Keys National Marine Sanctuary (FKNMS), which was initiated in 1998. In 1995-96, a baseline study on the knowledge, attitudes and perceptions of proposed FKNMS management strategies and regulations of commercial fishers, dive operators and on selected environmental group members was conducted by researchers at the University of Florida and the University of Miami’s Rosenstiel School of Atmospheric and Marine Science (RSMAS). The baseline study was funded by the U.S. Man and the Biosphere Program, and components of the study were published by Florida Sea Grant and in several peer reviewed journals. The study was accepted into the Socioeconomic Research & Monitoring Program at a workshop to design the program in 1998, and workshop participants recommended that the study be replicated every ten years. The 10-year replication was conducted in 2004-05 (commercial fishers) 2006 (dive operators) and 2007 (environmental group members) by the same researchers at RSMAS, while the University of Florida researchers were replaced by Thomas J. Murray & Associates, Inc., which conducted the commercial fishing panels in the FKNMS. The 10-year replication study was funded by NOAA’s Coral Reef Conservation Program. The study not only makes 10-year comparisons in the knowledge, attitudes and perceptions of FKNMS management strategies and regulations, but it also establishes new baselines for future monitoring efforts. Things change, and following the principles of “adaptive management”, management has responded with changes in the management plan strategies and regulations. Some of the management strategies and regulations that were being proposed at the time of the baseline 1995-96 study were changed before the management plan and regulations went into effect in July 1997. This was especially true for the main focus of the study which was the various types of marine zones in the draft and final zoning action plan. Some of the zones proposed were changed significantly and subsequently new zones have been created. This study includes 10-year comparisons of socioeconomic/demographic profiles of each user group; sources and usefulness of information; knowledge of purposes of FKNMS zones; perceived beneficiaries of the FKNMS zones; views on FKNMS processes to develop management strategies and regulations; views on FKNMS zone outcomes; views on FKNMS performance; and general support for FKNMS. In addition to new baseline information on FKNMS zones, new baseline information was developed for spatial use, investment and costs-and-earnings for commercial fishers and dive operators, and views on resource conditions for all three user groups. Statistical tests were done to detect significant changes in both the distribution of responses to questions and changes in mean scores for items replicated over the 10-year period. (PDF has 143 pages.)
Resumo:
This document presents the results of the first three monitoring events to track the recovery of a repaired coral reef injured by the M/V Elpis vessel grounding incident of November 11, 1989. This grounding occurred within the boundaries of what at the time was designated the Key Largo National Marine Sanctuary (NMS), now designated the Key Largo NMS Existing Management Area within the Florida Keys National Marine Sanctuary (FKNMS). Pursuant to the National Marine Sanctuaries Act (NMSA) 16 U.S.C. 1431 et seq., and the Florida Keys National Marine Sanctuary and Protection Act (FKNMSPA) of 1990, NOAA is the federal trustee for the natural and cultural resources of the FKNMS. Under Section 312 of the NMSA, NOAA has the authority to recover monetary damages for injury, destruction, or loss of Sanctuary resources, and to use the recovered monies to restore injured or lost sanctuary resources within the FKNMS. The restoration monitoring program tracks patterns of biological recovery, determines the success of restoration measures, and assesses the resiliency to environmental and anthropogenic disturbances of the site over time. To evaluate restoration success, reference habitats adjacent to the restoration site are concurrently monitored to compare the condition of restored reef areas with natural coral reef areas unimpacted by the vessel grounding. Restoration of the site was completed September 1995, and thus far three monitoring events have occurred; one in the summer of 2004, one in the summer of 2005, and the latest in the summer of 2007. The monitoring in 2004 was in the nature of a “pilot project,” or proof of concept. Only the quantitative results of the 2005 and 2007 monitoring are presented and discussed. Monitoring has consisted of assessment of the structural stability of limestone boulders used in the restoration and comparison of the coral communities on the boulders and reference areas. Corals are divided into Gorgonians, Milleporans, and Scleractinians. Coral densities at the Restored and Reference areas for the 2005 and 2007 events are compared, and it is shown that the densities of all taxa in the Restored area are greater by 2007, though not significantly so. For the Scleractinians, number and percentage of colonies by species, as well as several common biodiversity indices are provided. The greater biodiversity of the Restored area is evidenced. Also, size-class frequency distributions for Agaricia spp. (Scleractinia) are presented. These demonstrate the approaching convergence of the Restored and Reference areas in this regard. An inter-annual comparison of densities, within both areas, for all three Orders, is presented. The most noteworthy finding was the relative consistency across time for all taxa in each area. Finally, certain anomalies regarding species settlement patterns are presented. (PDF contains 48 pages.)
Resumo:
Executive Summary: The Connectivity Colloquium evolved from an exhortation by Dan Basta, Director of the National Marine Sanctuary Program, to come together and assess what we know about the condition of our natural resources, identify information gaps and how to fill them, and transform science and management from an emphasis on documentation to a nexus for action. This purpose in some ways reflects the initiation of the Florida Keys National Marine Sanctuary itself, which was designated by an act of the U.S. Congress in 1990 in the aftermath of the 1989 Exxon Valdez oil spill in Alaska and three major ship groundings of the Florida Reef Tract in late 1989. Over the next seven years NOAA worked with federal, state, and local partners to develop a comprehensive management plan for the Sanctuary implemented under a co-trustee partnership between NOAA and the State of Florida. (PDF contains 270 pages; 14Mb)
Resumo:
From May 22 to June 4, 2006, NOAA scientists led a research cruise using the ROPOS Remotely Operated Vehicle (ROV) to conduct a series of dives at targeted sites in the Olympic Coast National Marine Sanctuary (OCNMS) with the goal of documenting deep coral and sponge communities. Dive sites were selected from areas for which OCNMS had side scan sonar data indicating the presence of hard or complex substrate. The team completed 11 dives in sanctuary waters ranging from six to 52 hours in length, at depths ranging from 100 to 650 meters. Transect surveys were completed at 15 pre-selected sites, with additional observations made at five other sites. The survey locations included sites both inside and outside the Essential Fish Habitat (EFH) Conservation Area, known as Olympic 2, established by the Pacific Fishery Management Council, enacted on June 12, 2006. Bottom trawling is prohibited in the Olympic 2 Conservation Area for nontribal fishermen. The Conservation Area covers 159.4 square nautical miles or about 15 percent of the sanctuary. Several species of corals and sponges were documented at 14 of the 15 sites surveyed, at sites both inside and outside the Conservation Area, including numerous gorgonians and the stony corals Lophelia pertusa and Desmophyllum dianthus, as well as small patches of the reef building sponge Farrea occa. The team also documented Lophelia sp. and Desmophyllum sp. coral rubble, dead gorgonians, lost fishing gear, and other anthropogenic debris, supporting concerns over potential risks of environmental disturbances to coral health. (PDF contains 60 pages.)
Resumo:
This document presents the results of the first two monitoring events to track the recovery of a repaired coral reef injured by the M/V Wellwood vessel grounding incident of August 4, 1984. This grounding occurred within the boundaries of what at the time was designated the Key Largo National Marine Sanctuary (NMS), now designated the Key Largo NMS Existing Management Area within the Florida Keys National Marine Sanctuary (FKNMS). Pursuant to the National Marine Sanctuaries Act (NMSA) 16 U.S.C. 1431 et seq., and the Florida Keys National Marine Sanctuary and Protection Act (FKNMSPA) of 1990, NOAA is the federal trustee for the natural and cultural resources of the FKNMS. Under Section 312 of the NMSA, NOAA has the authority to recover monetary damages for injury, destruction, or loss of Sanctuary resources, and to use the recovered monies to restore injured or lost sanctuary resources within the FKNMS. The restoration monitoring program tracks patterns of biological recovery, determines the success of restoration measures, and assesses the resiliency to environmental and anthropogenic disturbances of the site over time. To evaluate restoration success, reference habitats adjacent to the restoration site are concurrently monitored to compare the condition of restored reef areas with “natural” coral reef areas unimpacted by the vessel grounding or other injury. Restoration of the site was completed on July 22, 2002, and thus far two monitoring events have occurred; one in the Fall of 2004, and one in the Summer/Fall of 2006. The monitoring has consisted of: assessment of the structural stability of restoration modules and comparison of the coral recruitment conditions of the modules and reference sites. Corals are divided into Gorgonians, Milleporans, and Scleractinians and (except where noted) recruits are defined as follows: Gorgonians—maximum size (height) 150 mm at first monitoring event, 270 mm at second; Milleporans—maximum size (height) 65 mm at first event, 125 mm at second; Scleractinians—maximum size (greatest diameter) 50 mm at second event (only one species was size-classed at first event, at smaller size). Recruit densities at the restored and reference areas for each event are compared, as are size-class frequency distributions. For the Scleractinians, number and percentage of recruits by species, as well as several common biodiversity indices are provided. Finally, a qualitative comparison of recruit substrate settlement preference is indicated. Generally, results indicate that restored areas are converging on reference areas, based on almost all parameters examined, with one noted exception. Further monitoring is planned and the trends are anticipated to continue; close attention will be paid to the indicated anomaly. (PDF contains 63 pages.)