972 resultados para NICKEL COMPOUNDS - Magnetic Properties
Resumo:
The growth of magnetron sputtered Co/Au and Pd/Co/Au superlattices on Au and Pd buffer layers, deposited onto glass substrates, has been monitored optically and magneto-optically in real time, using rotating analyser ellipsometry and Kerr polarimetry, at a wavelength of 633 nm. The magneto-optical traces, combined with ex situ and in situ hysteresis loops, provide a detailed and informative fingerprint of the optical and magnetic properties of the films as they evolve during growth. For Co/Au, oscillations in the polar magneto-optical effect developed during the deposition of An overlayers on Co and these may be attributed to quantum well states. However, the hysteresis measurements show that the magnetic field required to maintain saturation magnetization throughout the experiment was larger than available in situ, introducing a degree of confusion concerning the interpretation of the data. This problem was overcome by the incorporation of Pd layers into the Co/Au structure, thereby eliminating variation in magnetic orientation during growth of the Au layers as a contributory factor to the observations.
Resumo:
The properties and characteristics of a recently proposed anisotropic metamaterial based upon layered arrays of tightly coupled pairs of "dogbone" shaped stripe conductors have been explored in detail. It has been found that a metamaterial composed of such stacked layers exhibits artificial magnetism and may support backward wave propagation. The equivalent network models of the constitutive conductor pairs arranged in the periodic array have been devised and applied to the identification of the specific types of resonances, and to the analysis of their contribution into the effective dielectric and magnetic properties of the artificial medium. The proposed "dogbone" configuration of conductor pairs has the advantage of being entirely realizable and assemblable in planar technology. It also appears more prospective than simple cut-wire or metal-plate pairs because the additional geometrical parameters provide an efficient control of separation between the electric and magnetic resonances that, in turn, makes it possible to obtain a fairly broadband left-handed behaviour of the structure at low frequencies.
Resumo:
A new compound, IrMnSi, has been synthesized, and its crystal structure and magnetic properties have been investigated by means of neutron powder diffraction, magnetization measurements, and first-principles theory. The crystal structure is found to be of the TiNiSi type (ordered Co2P, space group Pnma). The Mn-projected electronic states are situated at the Fermi level, giving rise to metallic binding, whereas a certain degree of covalent character is observed for the chemical bond between the It and Si atoms. A cycloidal, i.e., noncollinear, magnetic structure was observed below 460 K, with the propagation vector q=[0,0,0.4530(5)] at 10 K. The magnetism is dominated by large moments on the Mn sites, 3.8 mu(B)/atom from neutron diffraction. First-principles theory reproduces the propagation vector of the experimental magnetic structure as well as the angles between the Mn moments. The calculations further result in a magnetic moment of 3.21 mu(B) for the Mn atoms, whereas the Ir and Si moments are negligible, in agreement with observations. A calculation that more directly incorporates electron-electron interactions improves the agreement between the theoretical and experimental magnetic moments. A band mechanism is suggested to explain the observed magnetic order.
Resumo:
Magnetic properties of eight particle size ranges from nine locations in Iceland and 26 locations in southern Greenland reveal the importance of source variation for our understanding of paleomagnetic and environmental magnetic records in the marine environment. These terrestrial samples show varying degrees of particle size dependence with all samples showing that the silt fraction possesses greater concentrations of ferrimagnetic minerals than either clay or sand. Fine pseudo-single domain (PSD) size magnetic grains dominate the magnetic assemblage of all Icelandic fractions. In contrast, Greenlandic samples possess greater variation in magnetic grain size; only fine silt and clay are as magnetically fine as the Icelandic PSD grains, while Greenlandic silts and sands are dominated by coarser PSD and multi-domain grains. These observations from potential marine sediment sources suggest that the silt size fraction is a likely driver for much of the concentration-dependent parameters derived from bulk magnetic records and that the magnetic grain size of the silt fraction can be used to discriminate between Icelandic and Greenlandic sources. Using these results to examine magnetic grain size records from marine sediment cores collected across the northern North Atlantic suggests that source, not just transport-controlled physical grain-size, has a significant impact on determining the magnetic grain size at a particular location. Homogeneity of magnetic grain size in Icelandic sediments at least partially explains the consistent quality of paleomagnetic records derived from cores surrounding Iceland and their ability to buffer large environmental changes. © 2013 Elsevier B.V.
Resumo:
We report the static & dynamic magnetic characteristics of a high-layer-number NiFe/FeMn multilayer test structure with potential applications in broadband absorber and filter devices. To allow fine control over the absorption linewidths and to understand the mechanisms governing the resonances in a tailored structure similar to that expected to be used in real world applications, the multilayer was intentionally designed to have layer thickness and interface roughness variations. Magnetometry measurements show the sample has complex hysteresis loops with features consistent with single ferromagnetic film reversals. Structural characterisation by transmission electron microscopy allows us to correlate the magnetic properties with structural features. Analysis of resonance frequencies from broadband ferromagnetic resonance measurements as a function of field magnitude and orientation provide values of the local exchange bias, rotatable anisotropy, and uniaxial anisotropy fields for specific layers in the stack and explain the observed mode softening. The linewidths of the multilayer are adjustable around the bias field, approaching twice that seen at larger fields, allowing control over the bandwidth of devices formed from the structure.
Resumo:
A range of lanthanum strontium manganates (La1−xSrxMnO3–LSMO) where 0 ≤ x < 0.4 were prepared using a modified peroxide sol–gel synthesis method. The magnetic nanoparticle (MNP) clusters obtained for each of the materials were characterised using scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and infra-red (IR) spectroscopy in order to confirm the crystalline phases, crystallite size and cluster morphology. The magnetic properties of the materials were assessed using the Superconducting quantum interference device (SQUID) to evaluate the magnetic susceptibility, Curie temperature (Tc) and static hysteretic losses. Induction heating experiments also provided an insight into the magnetocaloric effect for each material. The specific absorption rate (SAR) of the materials was evaluated experimentally and via numerical simulations. The magnetic properties and heating data were linked with the crystalline structure to make predictions with respect to the best LSMO composition for mild hyperthermia (41 °C ≤ T ≤ 46 °C). La0.65Sr0.35MnO3, with crystallite diameter of 82.4 nm, (agglomerate size of ∼10 μm), Tc of 89 °C and SAR of 56 W gMn−1 at a concentration 10 mg mL−1 gave the optimal induction heating results (Tmax of 46.7 °C) and was therefore deemed as most suitable for the purposes of mild hyperthermia, vide infra.
Resumo:
Os resultados apresentados aqui foram alcançados no âmbito do programa de doutoramento intitulado “Impurezas Magnéticas em Materiais Nanoestruturados”. O objectivo do estudo foi a síntese e caracterização de óxido contendo impurezas magnéticas. Durante este trabalho, sínteses de sol-gel não-aquoso têm sido desenvolvidos para a síntese de óxidos dopados com metais de transição (ZnO e ZrO2). A dopagem uniforme é particularmente importante no estudo de semicondutores magnéticos diluídos (DMSs) e o ponto principal deste estudo foi verificar o estado de oxidação e a estrutura local do dopante e para excluir a existência de uma fase secundária como a origem do ferromagnetismo. Para alargar o âmbito da investigação e explorar plenamente o conceito de "impurezas magnéticas em materiais nanoestruturados" estudamos as propriedades de nanopartículas magnéticas dispersas em uma matriz de óxido. As nanopartículas (ferrita de cobalto) foram depositadas como um filme e cobertas com um óxido metálico semicondutor ou dielétrico (ZnO, TiO2). Estes hetero-sistemas podem ser considerados como a dispersão de impurezas magnéticas em um óxido. As caracterizações exigidas por estes nanomateriais têm sido conduzidas na Universidade de Aveiro e Universidade de Montpellier, devido ao equipamento complementar.
Resumo:
The results presented in this thesis have been achieved under the Ph.D. project entitled “Nonaqueous Sol-Gel routes to doped metal oxide nanoparticles: Synthesis, characterization, assembly and properties”. The purpose of this study is the investigation of metal oxide nanostructures doped with metals of a diverse nature, leading to different type of applications. The easier control over the reaction kinetics in solvothermal routes, compared to aqueous methods, allows to better match the reactivity between metal oxide precursors, paving the way to a facile and low temperature production of doped oxides. In this manuscript diverse examples of the exploitation of the “Benzyl Alcohol Route” are discussed. Such a powerful pathway was utilized for the synthesis of transition metal doped zirconia, hafnia and various perovskites, and the study of their magnetic properties, as well as the synthesis of rare earth doped zirconium oxide. A further extension, proving the solidity of the synthetic method, is shown for the preparation of Li4Ti5O12 nanocrystals carrying excellent electrochemical properties for lithium-ion battery applications. Finally, the effect of doping and other reaction parameters on the assembly of the nanocrystals is discussed. These studies were carried out principally at the University of Aveiro, as well as at the University of Montpellier II and at the Seoul National University due to complementary available expertises and equipments.
Resumo:
Este projecto de doutoramento tem como objetivo isolar e caracterizar sistematicamente novos polímeros de coordenação, no estado sólido. A presença de grupos rígidos possuindo, em particular, átomos de oxigénio e de azoto, deverá induzir interessantes propriedades fotoluminescentes (rendimentos quânticos e tempos de vida elevados, assim como vias de transferência de energia eficientes), que poderão permitir a utilização dos compostos poliméricos na produção de dispositivos funcionais. As diferentes abordagens sintéticas foram ajustadas para cada material e basearam-se, preferencialmente, nas sínteses hidrotérmicas e nas assistidas por radiação de microondas. A estrutura dos materiais foi elucidada a partir de métodos de difracção de raios X (de cristal único ou de pós) em conjunto com outras técnicas, tais como RMN de estado sólido, microscopia eletrónica, análises térmicas, espectroscopia vibracional e estudos de composição elementar. Os compostos microcristalinos foram sistematicamente estudados a fim de investigar outras propriedades além das de fotoluminescência. Alguns dos materiais revelaram multifuncionalidade apresentando simultaneamente tempos de vida na ordem dos milisegundos, elevados rendimentos quânticos e elevado desempenho como catalisadores heterogéneos. As propriedades magnéticas de um composto baseado em érbio foram igualmente estudadas, assim como as de adsorpção e permuta de solvente de uma estrutura porosa baseada em cério.
Resumo:
Perovskite manganite compounds, Lai-xDxMnOs (D-divalent alkaline earth Ca, Sr or Ba), whose electrical and magnetic properties were first investigated nearly a half century ago, have attracted a great deal of attention due to their rich phase diagram. From the point of view of designing a future application, the strong pressure dependence of the resistivity and the accompanying effects in thin films have potential for application in pressure sensing and electronic devices. In this study we report our experimental investigations of pressure dependence of the resistivity of Lao.siSvo^iQMnOs and Lai-xSvxMnOs (LSMO) epitaxial films with x= 0.15, 0.20, 0.25, 0.30, 0.35, on SrTiOs substrates.
Resumo:
The main purpose of this thesis is to study properties of La2/3Cai/3Mn03, both polycrystalline
ceramics and thin films. This material has striking related electrical and
magnetic properties. Thin films show colossal negative magnetoresistance (CMR) near
transition from an insulating to a metallic state accompanied closely by transition from
a paramagnetic to a ferromagnetic state. The double exchange mechanism (DE) and the
Jahn-Teller deformations play an important role in CMR effect. Applied pressure has a
very similar effect as does an applied magnetic field, except, at low temperatures (T
Resumo:
K-(BETS)2FeBr4 is a quasi-2D charge transfer organic metal with interesting electronic and magnetic properties. It undergoes a transition to an antiferromagnetic (AF) state at ambient pressure at the Neel temperature (T^^) = 2.5 K, as well as to a superconducting (SC) state at 1.1 K [1]. The temperature dependence of the electrical resistivity shows a small decrease at T;v indicating the resistivity drops as a result of the onset of the ordering of Fe'*''" spins. A sharp drop in the resistivity at 1.1 K is due to its superconducting transition. The temperature dependence of the susceptibility indicates an antiferromagnetic spin structure with the easy axis parallel to the a-axis. The specific heat at zero-field shows a large peak at about 2.4 K, which corresponds to the antiferromagnetic transition temperature (Tat) and no anomaly is observed around the superconducting transition temperature (1.1 K) demonstrating that the magnetically ordered state is not destroyed by the appearance of another phase transition (the superconducting transition) in the 7r-electron layers [1], [2]. This work presents an investigation of how the low frequency electromagnetic response is affected by the antiferromagnetic and superconducting states, as well as the onset of strong correlation. The location of the easy axis of three samples was determined and polarized thermal reflectance measurements of these «-(BETS)2FeBr4 samples oriented with their vertical axis along the a- and c axes were then carried out using a *He refrigerator cryostat and a Martin-Puplett type polarizing interferometer at various temperatures (T = 0.5 K, 1.4 K. 1.9 K, 2.8 K) above and below the superconducting state and/or antiferromagnetic state. Comparison of the SC state to the normal state along the o- and c-axes indicates a rising thermal reflectance at low frequencies (below 10 cm"' ) which may be a manifestation of the superconducting energy gap. A dip-Hke feature is detected at low frequencies (below 15 cm"') in the thermal reflectance plots which probe the antiferromagnetic state along the two axes, and may be due to the opening of a gap in the excitation spectrum as a result of the antiferromagnetism. In another set of experiments, thermal reflectance measurements carried out along the a- and c-axes at higher temperatures (10 K-80 K) show that the reflectivity decreases with increasing temperature to 60 K (the coherence temperature) above which it increases again. Comparison of the thermal reflectance plots along the a- and c-axes at higher temperatures reveals an anisotropy between these two axes. The Hagen-Rubens thermal reflectance plots corresponding to an average over the ac-plane were calculated using experimental hterature resistivity values. Comparison of the Hagen-Rubens plots with the experimental thermal reflectance along the a- and c-axes indicates that both exhibit the general trend of a decrease in thermal reflectance with increasing frequency, however the calculated Hagen-Rubens thermal reflectance at different temperatures is much lower than the experimental curves.
Resumo:
Perovskite type piezoelectric and manganese oxide materials have gained a lot of attention in the field of device engineering. Lead zirconium titananium oxide (PbZri.iTiiOa or PZT) is a piezoelectric material widely used as sensors and actuators. Miniaturization of PZTbased devices will not only perfect many existing products, but also opens doors to new applications. Lanthanum manganese oxides Lai-iAiMnOa (A-divalent alkaline earth such as Sr, Ca or Ba) have been intensively studied for their colossal magnetoresistance (CMR) properties that make them applicable in memory cells, magnetic and pressure sensors. In this study, we fabricate PZT and LSMO(LCMO) heterostructures on SrTiOa substrates and investigate their temperature dependency of resistivity and magnetization as a function of the thickness of LSMO(LCMO) layer. The microstructure of the samples is analysed through TEM. In another set of samples, we study the effect of application of an electric field across the PZT layer that acts as an external pressure on the manganite layer. This verifies the correlation of lattice distortion with transport and magnetic properties of the CMR materials.
Resumo:
The macroscopic properties of the superconducting phase in the multiphase compound YPd5B3 C.3 have been investigated. The onset of superconductivity was observed at 22.6 K, zero resistance at 21.2 K, the lower critical field Hel at 5 K was determined to be Hel (5) rv 310 Gauss and the compound was found to be an extreme type-II superconductor with the upper critical field in excess of 55000 Gauss at 15 K. From the upper and lower critical field values obtained, several important parameters of the superconducting state were determined at T = 15 K. The Ginzburg-Landau paramater was determined to be ~ > 9 corresponding to a coherence length ~ rv 80A and magnetic penetration depth of 800A. In addition measurements of the superconducting transition temperature Te(P) under purely hydrostatically applied pressure have been carried out. Te(P) of YPd5B3 C.3 decreases linearly with dTe/dP rv -8.814 X 10-5 J
Resumo:
The synthesis of 3-ethynylthienyl- (2.07), 3-ethynylterthienyl- (2.19) substituted qsal [qsalH = N-(8-quinolyl)salicylaldimine] and 3,3' -diethynyl-2,2' -bithienyl bridging bisqsal (5.06) ligands are described along with the preparation and characterization of eight cationic iron(III) complexes containing these ligands with a selection of counteranions [(2.07) with: SCN- (2.08), PF6- (2.09), and CI04- (2.10); (2.19) with PF6 - (2.20); (5.06) with: cr (5.07), SeN- (5.08), PF6- (5.09), and CI04- (5.10)]. Spin-crossover is observed in the solid state for (2.08) - (2.10) and (5.07) - (5.10), including a ve ry rare S = 5/2 to 3/2 spin-crossover in complex (2.09). The unusal reduction of complex (2.10) produces a high-spin iron(I1) complex (2.12). Six iron(II) complexes that are derived from thienyl analogues of bispicen [bispicen = bis(2-pyridylmethyl)-diamine] [2,5-thienyl substituents = H- (3.11), Phenyl- (3.12), 2- thienyl (3.13) or N-phenyl-2-pyridinalimine ligands [2,5-phenyl substituents = diphenyl (3.23), di(2-thienyl) (3.24), 4-phenyl substituent = 3-thienyl (3.25)] are reported Complexes (3.11), (3.23) and (3.25) display thermal spin-crossover in the solid state and (3.12) remains high-spin at all temperatures. Complex (3.13) rearranges to form an iron(II) complex (3.14) with temperature dependent magnetic properties be s t described as a one-dimensional ferromagnetic chain, with interchain antiferromagnetic interactions and/or ZFS dominant at low temperatures. Magnetic succeptibility and Mossbauer data for complex (3.24) display a temperature dependent mixture of spin isomers. The preparation and characterization of two cobalt(II) complexes containing 3- ethynylthienyl- (4.04) and 3-ethynylterhienyl- (4.06) substituted bipyridine ligands [(4.05): [Co(dbsqh(4.04)]; (4.07): [Co(dbsq)2(4.06)]] [dbsq = 3,5-dbsq=3,5-di-tert-butylI ,2-semiquinonate] are reported. Complexes (4.05) and (4.07) exhibit thermal valence tautomerism in the solid state and in solution. Self assembly of complex (2.10) into polymeric spheres (6.11) afforded the first spincrossover, polydisperse, micro- to nanoscale material of its kind. . Complexes (2.20), (3.24) and (4.07) also form polymers through electrochemical synthesis to produce hybrid metaUopolymer films (6.12), (6.15) and (6.16), respectively. The films have been characterized by EDX, FT-IR and UV-Vis spectroscopy. Variable-temperature magnetic susceptibility measurements demonstrate that spin lability is operative in the polymers and conductivity measurements confirm the electron transport properties. Polymer (6.15) has a persistent oxidized state that shows a significant decrease in electrical resistance.