943 resultados para Multiplicative noise
Resumo:
Environmental Psychology has typically considered noise as pollution and focused upon its negative impact. However, recent research in psychology and anthropology indicates the experience of noise as aversive depends upon the meanings with which it is attributed. Moreover, such meanings seem to be dependent on the social context. Here we extend this research through studying the aural experience of a religious festival in North India which is characterised by loud, continuous and cacophonous noise. Reporting an experiment and semi-structured interviews, we show that loud noise is experienced as pleasant or unpleasant according to the meanings attributed to it. Specifically, the experiment shows the same noise is experienced more positively (and listened to longer) when attributed to the festival rather than to a non-festival source. In turn, the qualitative data show that within the Mela, noises judged as having a religious quality are reported as more positive than noises that are not. Moreover, the qualitative data suggest a key factor in the evaluation of noise is our participants’ social identities as pilgrims. This identity provides a framework for interpreting the auditory environment and noises judged as intruding into their religious experience were judged negatively, whereas noises judged as contributing to their religious experience were judged more positively. Our findings therefore point to the ways in which our social identities are implicated in the process of attributing meaning to the auditory environment.
Resumo:
Before a natural sound can be recognized, an auditory signature of its source must be learned through experience. Here we used random waveforms to probe the formation of new memories for arbitrary complex sounds. A behavioral measure was designed, based on the detection of repetitions embedded in noises up to 4 s long. Unbeknownst to listeners, some noise samples reoccurred randomly throughout an experimental block. Results showed that repeated exposure induced learning for otherwise totally unpredictable and meaningless sounds. The learning was unsupervised and resilient to interference from other task-relevant noises. When memories were formed, they emerged rapidly, performance became abruptly near-perfect, and multiple noises were remembered for several weeks. The acoustic transformations to which recall was tolerant suggest that the learned features were local in time. We propose that rapid sensory plasticity could explain how the auditory brain creates useful memories from the ever-changing, but sometimes repeating, acoustical world. © 2010 Elsevier Inc.
Resumo:
Three experiments measured the effects of age on informational masking of speech by competing speech. The experiments were designed to minimize the energetic contributions of the competing speech so that informational masking could be measured with no large corrections for energetic masking. Experiment 1 used a "speech-in-speech-in-noise" design, in which the competing speech was presented in noise at a signal-to-noise ratio (SNR) of -4 dB. This ensured that the noise primarily contributed the energetic masking but the competing speech contributed the informational masking. Equal amounts of informational masking (3 dB) were observed for young and elderly listeners, although less was found for hearing-impaired listeners. Experiment 2 tested a range of SNRs in this design and showed that informational masking increased with SNR up to about an SNR of -4 dB, but decreased thereafter. Experiment 3 further reduced the energetic contribution of the competing speech by filtering it into different frequency bands from the target speech. The elderly listeners again showed approximately the same amount of informational masking (4-5 dB), although some elderly listeners had particular difficulty understanding these stimuli in any condition. On the whole, these results suggest that young and elderly listeners were equally susceptible to informational masking. © 2009 Acoustical Society of America.
Resumo:
In noise repetition-detection tasks, listeners have to distinguish trials of continuously running noise from trials in which noise tokens are repeated in a cyclic manner. Recently, it has been shown that using the exact same noise token across several trials (“reference noise”) facilitates the detection of repetitions for this token [Agus et al. (2010). Neuron 66, 610–618]. This was attributed to perceptual learning. Here, the nature of the learning was investigated. In experiment 1, reference noise tokens were embedded in trials with or without cyclic presentation. Naïve listeners reported repetitions in both cases, thus responding to the reference noise even in the absence of an actual repetition. Experiment 2, with the same listeners, showed a similar pattern of results even after the design of the experiment was made explicit, ruling out a misunderstanding of the task. Finally, in experiment 3, listeners reported repetitions in trials containing the reference noise, even before ever hearing it presented cyclically. The results show that listeners were able to learn and recognize noise tokens in the absence of an immediate repetition. Moreover, the learning mandatorily interfered with listeners' ability to detect repetitions. It is concluded that salient perceptual changes accompany the learning of noise.
Resumo:
Performance at the International Computer Music Conference, University of Huddersfield (with Eric Lyon, Franziska Schroder & Steve Davis).
Resumo:
Within Ireland, interest in strategically supporting young people’s participation in the arts has increased. Additionally, awareness of the Internet’s potential for promot- ing engagement with the arts has grown. Addressing national directives and local needs assessments, South Dublin County Council’s Arts Office initiated NOISE South Dublin (http://www.noisesouthdublin.com), an interactive Web site based on Australia Council’s NOISE project (http://www.noise.net), to promote the creative development of young people in the county. This article presents the practical chal- lenges and potential of youth arts Web-based programs for harnessing the creative engagement of youth. It concludes that the Internet is only useful if it expands online engagement offline.
Resumo:
Massive multiple-input multiple-output (MIMO) systems are cellular networks where the base stations (BSs) are equipped with unconventionally many antennas, deployed on colocated or distributed arrays. Huge spatial degrees-of-freedom are achieved by coherent processing over these massive arrays, which provide strong signal gains, resilience to imperfect channel knowledge, and low interference. This comes at the price of more infrastructure; the hardware cost and circuit power consumption scale linearly/affinely with the number of BS antennas N. Hence, the key to cost-efficient deployment of large arrays is low-cost antenna branches with low circuit power, in contrast to today’s conventional expensive and power-hungry BS antenna branches. Such low-cost transceivers are prone to hardware imperfections, but it has been conjectured that the huge degrees-of-freedom would bring robustness to such imperfections. We prove this claim for a generalized uplink system with multiplicative phasedrifts, additive distortion noise, and noise amplification. Specifically, we derive closed-form expressions for the user rates and a scaling law that shows how fast the hardware imperfections can increase with N while maintaining high rates. The connection between this scaling law and the power consumption of different transceiver circuits is rigorously exemplified. This reveals that one can make the circuit power increase as p N, instead of linearly, by careful circuit-aware system design.
Resumo:
Massive multiple-input multiple-output (MIMO) systems are cellular networks where the base stations (BSs) are equipped with unconventionally many antennas. Such large antenna arrays offer huge spatial degrees-of-freedom for transmission optimization; in particular, great signal gains, resilience to imperfect channel knowledge, and small inter-user interference are all achievable without extensive inter-cell coordination. The key to cost-efficient deployment of large arrays is the use of hardware-constrained base stations with low-cost antenna elements, as compared to today's expensive and power-hungry BSs. Low-cost transceivers are prone to hardware imperfections, but it has been conjectured that the excessive degrees-of-freedom of massive MIMO would bring robustness to such imperfections. We herein prove this claim for an uplink channel with multiplicative phase-drift, additive distortion noise, and noise amplification. Specifically, we derive a closed-form scaling law that shows how fast the imperfections increase with the number of antennas.
Resumo:
To obtain cm/s precision, stellar surface magneto-convection must be disentangled from observed radial velocities (RVs). In order to understand and remove the convective signature, we create Sun-as-a-star model observations based on a 3D magnetohydrodynamic solar simulation. From these Sun-as-a-star model observations, we find several line characteristics are correlated with the induced RV shifts. The aim of this campaign is to feed directly into future high precision RV studies, such as the search for habitable, rocky worlds, with forthcoming spectrographs such as ESPRESSO.
Resumo:
The implementation of a dipole antenna co-designed and monolithically integrated with a low noise amplifier (LNA) on low resistivity Si substrate (20 Omega . cm) manufactured in 0.35 mu m commercial SiGe HBT process with f(T)/f(max) of 170 GHz and 250 GHz is investigated theoretically and experimentally. An air gap is introduced between the chip and a reflective ground plane, leading to substantial improvements in efficiency and gain. Moreover, conjugate matching conditions between the antenna and the LNA are exploited, enhancing power transfer between without any additional matching circuit. A prototype is fabricated and tested to validate the performance. The measured 10-dB gain of the standalone LNA is centered at 58 GHz with a die size of 0.7 mm x 0.6 mm including all pads. The simulated results showed antenna directivity of 5.1 dBi with efficiency higher than 70%. After optimization, the co-designed LNA-Antenna chip with a die size of 3 mm x 2.8 mm was characterized in anechoic chamber environment. A maximum gain of higher than 12 dB was obtained.
Resumo:
Distributed massive multiple-input multiple-output (MIMO) combines the array gain of coherent MIMO processing with the proximity gains of distributed antenna setups. In this paper, we analyze how transceiver hardware impairments affect the downlink with maximum ratio transmission. We derive closed-form spectral efficiencies expressions and study their asymptotic behavior as the number of the antennas increases. We prove a scaling law on the hardware quality, which reveals that massive MIMO is resilient to additive distortions, while multiplicative phase noise is a limiting factor. It is also better to have separate oscillators at each antenna than one per BS.
Resumo:
This paper presents a new approach to speech enhancement from single-channel measurements involving both noise and channel distortion (i.e., convolutional noise), and demonstrates its applications for robust speech recognition and for improving noisy speech quality. The approach is based on finding longest matching segments (LMS) from a corpus of clean, wideband speech. The approach adds three novel developments to our previous LMS research. First, we address the problem of channel distortion as well as additive noise. Second, we present an improved method for modeling noise for speech estimation. Third, we present an iterative algorithm which updates the noise and channel estimates of the corpus data model. In experiments using speech recognition as a test with the Aurora 4 database, the use of our enhancement approach as a preprocessor for feature extraction significantly improved the performance of a baseline recognition system. In another comparison against conventional enhancement algorithms, both the PESQ and the segmental SNR ratings of the LMS algorithm were superior to the other methods for noisy speech enhancement.
Resumo:
This paper presents a new approach to single-channel speech enhancement involving both noise and channel distortion (i.e., convolutional noise). The approach is based on finding longest matching segments (LMS) from a corpus of clean, wideband speech. The approach adds three novel developments to our previous LMS research. First, we address the problem of channel distortion as well as additive noise. Second, we present an improved method for modeling noise. Third, we present an iterative algorithm for improved speech estimates. In experiments using speech recognition as a test with the Aurora 4 database, the use of our enhancement approach as a preprocessor for feature extraction significantly improved the performance of a baseline recognition system. In another comparison against conventional enhancement algorithms, both the PESQ and the segmental SNR ratings of the LMS algorithm were superior to the other methods for noisy speech enhancement. Index Terms: corpus-based speech model, longest matching segment, speech enhancement, speech recognition