959 resultados para Multiple routes planning
Resumo:
Jakarta, Indonesia’s chronic housing shortage poses multiple challenges for contemporary policy-makers. While it may be in the city’s interest to increase the availability of housing, there is limited land to do so. Market pressures, in tandem with government’s desire for housing availability, demand consideration of even marginal lands, such as those within floodplains, for development. Increasingly, planning for a flood resilient Jakarta is complicated by a number of factors, including: the city is highly urbanized and land use data is limited; flood management is technically complex, creating potential barriers to engagement for both decision-makers and the public; inherent uncertainty exists throughout modelling efforts, central to management; and risk and liability for infrastructure investments is unclear. These obstacles require localized watershed-level participatory planning to address risks of flooding where possible and reduce the likelihood that informal settlements occur in areas of extreme risk. This paper presents a preliminary scoping study for determination of an effective participatory planning method to encourage more resilient development. First, the scoping study provides background relevant to the challenges faced in planning for contemporary Jakarta. Second, the study examines the current use of decision-support tools, such as Geographic Information Systems (GIS), in planning for Jakarta. Existing capacity in the use of GIS allows for consideration of the use of an emerging method of community consultation - Multi-Criteria Decision-Making (MCDM) support systems infused with geospatial information - to aid in engagement with the public and improve decision-making outcomes. While these methods have been used in Australia to promote stakeholder engagement in urban intensification, the planned research will be an early introduction of the method to Indonesia. As a consequence of this intervention, it is expected that planning activities will result in a more resilient city, capable of engaging with disaster risk management in a more effective manner.
Resumo:
We introduce the use of Ingenuity Pathway Analysis to analyzing global metabonomics in order to characterize phenotypically biochemical perturbations and the potential mechanisms of the gentamicin-induced toxicity in multiple organs. A single dose of gentamicin was administered to Sprague Dawley rats (200 mg/kg, n = 6) and urine samples were collected at -24-0 h pre-dosage, 0-24, 24-48, 48-72 and 72-96 h post-dosage of gentamicin. The urine metabonomics analysis was performed by UPLC/MS, and the mass spectra signals of the detected metabolites were systematically deconvoluted and analyzed by pattern recognition analyses (Heatmap, PCA and PLS-DA), revealing a time-dependency of the biochemical perturbations induced by gentamicin toxicity. As result, the holistic metabolome change induced by gentamicin toxicity in the animal's organisms was characterized. Several metabolites involved in amino acid metabolism were identified in urine, and it was confirmed that gentamicin biochemical perturbations can be foreseen from these biomarkers. Notoriously, it was found that gentamicin induced toxicity in multiple organs system in the laboratory rats. The proof-of-knowledge based Ingenuity Pathway Analysis revealed gentamicin induced liver and heart toxicity, along with the previously known toxicity in kidney. The metabolites creatine, nicotinic acid, prostaglandin E2, and cholic acid were identified and validated as phenotypic biomarkers of gentamicin induced toxicity. Altogether, the significance of the use of metabonomics analyses in the assessment of drug toxicity is highlighted once more; furthermore, this work demonstrated the powerful predictive potential of the Ingenuity Pathway Analysis to study of drug toxicity and its valuable complementation for metabonomics based assessment of the drug toxicity.
Resumo:
Adaptation to climate change is an imperative and an institutional challenge. This paper argues that the operationalisation of climate adaptation is a crucial element of a comprehensive response to the impacts of climate change on human settlements, including major cities and metropolitan areas. In this instance, the operationalisation of climate adaptation refers to climate adaptation becoming institutionally codified and implemented through planning policies and objectives, making it a central tenet of planning governance. This paper has three key purposes. First, it develops conceptual understandings of climate adaptation as an institutional challenge. Second, it identifies the intersection of this problem with planning and examines how planning regimes, as institutions, can better manage stress created by climate change impacts in human settlements. Third, it reports empirical findings focused on how the metro-regional planning regime in Southeast Queensland (SEQ), Australia, has institutionally responded to the challenge of operationalising climate adaptation. Drawing on key social scientific theories of institutionalism, it is argued that the success or failure of the SEQ planning regime's response to the imperative of climate adaptation is contingent on its ability to undergo institutional change. It is further argued that a capacity for institutional change is heavily conditioned by the influence of internal and external pathways and barriers to change, which facilitate or hinder change processes. The paper concludes that the SEQ metro-regional planning regime has undergone some institutional change but has not yet undergone change sufficient to fully operationalise climate adaptation as a central tenet of planning governance in the region.
Resumo:
This paper characterises climate change as a “transformative stressor”. It argues that institutional change will become increasingly necessary as institutions seek to reorientate governance frameworks to better manage the transformative stresses created by climate change in urban environments. Urban and metropolitan planning regimes are identified as central institutions in addressing this challenge. The operationalisation of climate adaptation is identified as a central tenet of a comprehensive urban response to the transformative stresses that climate change is predicted to create. Operationalisation refers to climate adaptation becoming incorporated, codified and implemented as a central tenet of urban planning governance. This paper has three purposes. First, it examines conceptual perspectives on the role of transformative stressors in compelling institutional change. Second, it establishes a conceptual approach that characterises climate change as a transformative stressor requiring institutional change within planning frameworks. Third, it reports emergent results and analysis from an empirical inquiry which examines how the metro-regional planning regime of Southeast Queensland has responded to climate change as a transformative stressor via institutional change and the operationalisation of climate adaptation.
Resumo:
This timely and thorough book seeks to provide evidence-based assessments of ways in which spatial planning may develop and deliver new strategies for addressing both the causes and impacts of climate change. The authors state that much of the analysis is informed by experiences and learning from their own involvements with climate change projects. The book aims to be relevant to a wide audience and nominates its intended readership to include planning practitioners, scholars, post-graduate students of built environment courses, politicians and the ‘interested’ public. In this regard, the authors skilfully deliver with a comprehensive and accessible dissemination of the nexus between spatial planning and climate change...
Resumo:
Evolutionary computation is an effective tool for solving optimization problems. However, its significant computational demand has limited its real-time and on-line applications, especially in embedded systems with limited computing resources, e.g., mobile robots. Heuristic methods such as the genetic algorithm (GA) based approaches have been investigated for robot path planning in dynamic environments. However, research on the simulated annealing (SA) algorithm, another popular evolutionary computation algorithm, for dynamic path planning is still limited mainly due to its high computational demand. An enhanced SA approach, which integrates two additional mathematical operators and initial path selection heuristics into the standard SA, is developed in this work for robot path planning in dynamic environments with both static and dynamic obstacles. It improves the computing performance of the standard SA significantly while giving an optimal or near-optimal robot path solution, making its real-time and on-line applications possible. Using the classic and deterministic Dijkstra algorithm as a benchmark, comprehensive case studies are carried out to demonstrate the performance of the enhanced SA and other SA algorithms in various dynamic path planning scenarios.
Resumo:
Adaptation is increasingly being viewed as a necessary response tool in respect of climate change effects. Though the subject of significant scholarly and professional attention, adaptation still continues to lag behind mitigation in the climate change discourse. However, this situation looks likely to change over the coming years due to a increasing scientific acceptance that certain climate change effects are now inevitable. The purpose of this research is to illustrate, consider and demonstrate how urban planning regimes can use some of their professional tools to develop adaptation strategies and interventions in urban systems. These tools include plan-making, development management, urban design and place-making. Urban systems contribute disproportionately to climate change and will also likely suffer considerably from the resulting effects. Moreover, the majority of the world’s population is now urbanised, suggesting that adaptation will be crucial in order to develop urban systems that are resilient to climate change effects. Informed by a reflexive, qualitative methodology, this paper offers an informed understanding and illustration of adaptation as a climate change response, its use in urban systems and some of the roles and strategies that planning may take in developing and implementing urban adaptation. It concludes that urban planning regimes can have key roles in adapting urban systems to numerous climate change effects.
Resumo:
Preservice teachers consistently report that managing student behaviour is one of their major concerns prior to and during practicum (Capel, 1997; Kyriacou & Stephens, 1999). Not surprisingly, preservice teachers are keen to gain knowledge and understanding of effective classroom management approaches that facilitate the development of positive learning environments in which students are engaged in learning. Establishing democratic teaching practices that allow student choice, communicating in a positive, helpful manner, ensuring the right to teach and the right to learn without disruptions is upheld, and promoting self-discipline are important steps in preventing misbehavior and developing a democratic community of learners.
Resumo:
Multiple sclerosis (MS) is a common chronic inflammatory disease of the central nervous system. Susceptibility to the disease is affected by both environmental and genetic factors. Genetic factors include haplotypes in the histocompatibility complex (MHC) and over 50 non-MHC loci reported by genome-wide association studies. Amongst these, we previously reported polymorphisms in chromosome 12q13-14 with a protective effect in individuals of European descent. This locus spans 288 kb and contains 17 genes, including several candidate genes which have potentially significant pathogenic and therapeutic implications. In this study, we aimed to fine-map this locus. We have implemented a two-phase study: a variant discovery phase where we have used next-generation sequencing and two target-enrichment strategies [long-range polymerase chain reaction (PCR) and Nimblegen's solution phase hybridization capture] in pools of 25 samples; and a genotyping phase where we genotyped 712 variants in 3577 healthy controls and 3269 MS patients. This study confirmed the association (rs2069502, P = 9.9 × 10−11, OR = 0.787) and narrowed down the locus of association to an 86.5 kb region. Although the study was unable to pinpoint the key-associated variant, we have identified a 42 (genotyped and imputed) single-nucleotide polymorphism haplotype block likely to harbour the causal variant. No evidence of association at previously reported low-frequency variants in CYP27B1 was observed. As part of the study we compared variant discovery performance using two target-enrichment strategies. We concluded that our pools enriched with Nimblegen's solution phase hybridization capture had better sensitivity to detect true variants than the pools enriched with long-range PCR, whilst specificity was better in the long-range PCR-enriched pools compared with solution phase hybridization capture enriched pools; this result has important implications for the design of future fine-mapping studies.
Resumo:
Phylogenetic relationships within the Tabanidae are largely unknown, despite their considerable medical and ecological importance. The first robust phylogenetic hypothesis for the horse fly tribe Scionini is provided, completing the systematic placement of all tribes in the subfamily Pangoniinae. The Scionini consists of seven mostly southern hemisphere genera distributed in Australia, New Guinea, New Zealand and South America. A 5757. bp alignment of 6 genes, including mitochondrial (COI and COII), ribosomal (28S) and nuclear (AATS and CAD regions 1, 3 and 4) genes, was analysed for 176 taxa using both Bayesian and maximum likelihood approaches. Results indicate the Scionini are strongly monophyletic, with the exclusion of the only northern hemisphere genus Goniops. The South American genera Fidena, Pityocera and Scione were strongly monophyletic, corresponding to current morphology-based classification schemes. The most widespread genus Scaptia was paraphyletic and formed nine strongly supported monophyletic clades, each corresponding to either the current subgenera or several previously synonymised genera that should be formally resurrected. Molecular results also reveal a newly recognised genus endemic to New Zealand, formerly placed within Scaptia. Divergence time estimation was employed to assess the global biogeographical patterns in the Pangoniinae. These analyses demonstrated that the Scionini are a typical Gondwanan group whose diversification was influenced by the fragmentation of that ancient land mass. Furthermore, results indicate that the Scionini most likely originated in Australia and subsequently radiated to New Zealand and South American by both long distance dispersal and vicariance. The phylogenetic framework of the Scionini provided herein will be valuable for taxonomic revisions of the Tabanidae.
Resumo:
Multiple sclerosis (MS) is an immune-mediated, demyelinating and neurodegenerative disease of the central nervous system. After traumatic brain injury, it is the leading cause of neurology disability in young adults. Considerable advances have been made in identifying genes involved in MS but the genetic and phenotypic complexity associated with this disease significantly hinders any progress. A novel class of small RNA molecules, microRNAs (miRNAs) has acquired much attention because they regulate the expression of up to 30% of protein-coding genes and may play a pivotal role in the development of many, if not all, complex diseases. Seven published studies investigated miRNAs from peripheral blood mononuclear cells, CD4+, CD8+ T cell, B lymphocytes, peripheral blood leukocytes, whole blood and brain astrocytes with MS risk. The absence of MS studies investigating plasma miRNA prompted the current investigation of identifying a circulating miRNA signature in MS. We conducted a microarray analysis of over 900 known miRNA transcripts from plasma samples collected from four MS individuals and four sex-aged and ethnicity matched healthy controls. We identified six plasma miRNA (miR-614, miR-572, miR-648, miR-1826, miR-422a and miR-22) that were significantly up-regulated and one plasma miRNA (miR-1979) that was significantly down-regulated in MS individuals. Both miR-422a and miR-22 have previously been implicated in MS. The present study is the first to show a circulating miRNA signature involved in MS that could serve as a potential prognostic and diagnostic biomarker for MS.
Resumo:
BACKGROUND: Genetic susceptibility to multiple sclerosis (MS) has been recognised for many years. Considerable data exist from the northern hemisphere regarding the familial recurrence risks for MS, but there are few data for the southern hemisphere and regions at lower latitude such as Australia. To investigate the interaction between environmental and genetic causative factors in MS, the authors undertook a familial recurrence risk study in three latitudinally distinct regions of Australia. METHODS: Immediate and extended family pedigrees have been collected for three cohorts of people with MS in Queensland, Victoria and Tasmania spanning 15° of latitude. Age of onset data from Queensland were utilised to estimate age-adjusted recurrence rates. RESULTS: Recurrence risks in Australia were significantly lower than in studies from northern hemisphere populations. The age-adjusted risk for siblings across Australia was 2.13% compared with 3.5% for the northern hemisphere. A similar pattern was seen for other relatives. The risks to relatives were proportional to the population risks for each site, and hence the sibling recurrence-risk ratio (λ(s)) was similar across all sites. DISCUSSION: The familial recurrence risk of MS in Australia is lower than in previously reported studies. This is directly related to the lower population prevalence of MS. The overall genetic susceptibility in Australia as measured by the λ(s) is similar to the northern hemisphere, suggesting that the difference in population risk is explained largely by environmental factors rather than by genetic admixture.
Resumo:
Objective: To perform a 1-stage meta-analysis of genome-wide association studies (GWAS) of multiple sclerosis (MS) susceptibility and to explore functional consequences of new susceptibility loci. Methods: We synthesized 7 MS GWAS. Each data set was imputed using HapMap phase II, and a per single nucleotide polymorphism (SNP) meta-analysis was performed across the 7 data sets. We explored RNA expression data using a quantitative trait analysis in peripheral blood mononuclear cells (PBMCs) of 228 subjects with demyelinating disease. Results: We meta-analyzed 2,529,394 unique SNPs in 5,545 cases and 12,153 controls. We identified 3 novel susceptibility alleles: rs170934T at 3p24.1 (odds ratio [OR], 1.17; p ¼ 1.6 � 10�8) near EOMES, rs2150702G in the second intron of MLANA on chromosome 9p24.1 (OR, 1.16; p ¼ 3.3 � 10�8), and rs6718520A in an intergenic region on chromosome 2p21, with THADA as the nearest flanking gene (OR, 1.17; p ¼ 3.4 � 10�8). The 3 new loci do not have a strong cis effect on RNA expression in PBMCs. Ten other susceptibility loci had a suggestive p < 1 � 10�6, some of these loci have evidence of association in other inflammatory diseases (ie, IL12B, TAGAP, PLEK, and ZMIZ1). Interpretation: We have performed a meta-analysis of GWAS in MS that more than doubles the size of previous gene discovery efforts and highlights 3 novel MS susceptibility loci. These and additional loci with suggestive evidence of association are excellent candidates for further investigations to refine and validate their role in the genetic architecture of MS.
Resumo:
Background: Multiple sclerosis (MS) is the most common cause of chronic neurologic disability beginning in early to middle adult life. Results from recent genome-wide association studies (GWAS) have substantially lengthened the list of disease loci and provide convincing evidence supporting a multifactorial and polygenic model of inheritance. Nevertheless, the knowledge of MS genetics remains incomplete, with many risk alleles still to be revealed. Methods: We used a discovery GWAS dataset (8,844 samples, 2,124 cases and 6,720 controls) and a multi-step logistic regression protocol to identify novel genetic associations. The emerging genetic profile included 350 independent markers and was used to calculate and estimate the cumulative genetic risk in an independent validation dataset (3,606 samples). Analysis of covariance (ANCOVA) was implemented to compare clinical characteristics of individuals with various degrees of genetic risk. Gene ontology and pathway enrichment analysis was done using the DAVID functional annotation tool, the GO Tree Machine, and the Pathway-Express profiling tool. Results: In the discovery dataset, the median cumulative genetic risk (P-Hat) was 0.903 and 0.007 in the case and control groups, respectively, together with 79.9% classification sensitivity and 95.8% specificity. The identified profile shows a significant enrichment of genes involved in the immune response, cell adhesion, cell communication/ signaling, nervous system development, and neuronal signaling, including ionotropic glutamate receptors, which have been implicated in the pathological mechanism driving neurodegeneration. In the validation dataset, the median cumulative genetic risk was 0.59 and 0.32 in the case and control groups, respectively, with classification sensitivity 62.3% and specificity 75.9%. No differences in disease progression or T2-lesion volumes were observed among four levels of predicted genetic risk groups (high, medium, low, misclassified). On the other hand, a significant difference (F = 2.75, P = 0.04) was detected for age of disease onset between the affected misclassified as controls (mean = 36 years) and the other three groups (high, 33.5 years; medium, 33.4 years; low, 33.1 years). Conclusions: The results are consistent with the polygenic model of inheritance. The cumulative genetic risk established using currently available genome-wide association data provides important insights into disease heterogeneity and completeness of current knowledge in MS genetics.
Resumo:
We conducted an association study across the human leukocyte antigen (HLA) complex to identify loci associated with multiple sclerosis (MS). Comparing 1927 SNPs in 1618 MS cases and 3413 controls of European ancestry, we identified seven SNPs that were independently associated with MS conditional on the others (each ). All associations were significant in an independent replication cohort of 2212 cases and 2251 controls () and were highly significant in the combined dataset (). The associated SNPs included proxies for HLA-DRB1*15:01 and HLA-DRB1*03:01, and SNPs in moderate linkage disequilibrium (LD) with HLA-A*02:01, HLA-DRB1*04:01 and HLA-DRB1*13:03. We also found a strong association with rs9277535 in the class II gene HLA-DPB1 (discovery set , replication set , combined ). HLA-DPB1 is located centromeric of the more commonly typed class II genes HLA-DRB1, -DQA1 and -DQB1. It is separated from these genes by a recombination hotspot, and the association is not affected by conditioning on genotypes at DRB1, DQA1 and DQB1. Hence rs9277535 represents an independent MS-susceptibility locus of genome-wide significance. It is correlated with the HLA-DPB1*03:01 allele, which has been implicated previously in MS in smaller studies. Further genotyping in large datasets is required to confirm and resolve this association.