888 resultados para Multi-Phase Flow


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tantalum-oxide thin films are shown to catalyse single- and multi-walled carbon nanotube growth by chemical vapour deposition. A low film thickness, the nature of the support material (best results with SiO2) and an atmospheric process gas pressure are of key importance for successful nanotube nucleation. Strong material interactions, such as silicide formation, inhibit nanotube growth. In situ X-ray photoelectron spectroscopy indicates that no catalyst reduction to Ta-metal or Ta-carbide occurs during our nanotube growth conditions and that the catalytically active phase is the Ta-oxide phase. Such a reduction-free oxide catalyst can be technologically advantageous. © 2013 The Royal Society of Chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A multi-objective optimization approach was proposed for multiphase orbital rendezvous missions and validated by application to a representative numerical problem. By comparing the Pareto fronts obtained using the proposed method, the relationships between the three objectives considered are revealed, and the influences of other mission parameters, such as the sensors' field of view, can also be analyzed effectively. For multiphase orbital rendezvous missions, the tradeoff relationships between the total velocity increment and the trajectory robustness index as well as between the total velocity increment and the time of flight are obvious and clear. However, the tradeoff relationship between the time of flight and the trajectory robustness index is weak, especially for the four- and five-phase missions examined. The proposed approach could be used to reorganize a stable rendezvous profile for an engineering rendezvous mission, when there is a failure that prevents the completion of the nominal mission.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on the design, optimization and testing of a self-regulating valve for single-phase liquid cooling of microelectronics. Its purpose is to maintain the integrated circuit (IC) at constant temperature and to reduce power consumption by diminishing flow generated by the pump as a function of the cooling requirements. It uses a thermopneumatic actuation principle that combines the advantages of zero power consumption and small size in combination with a high flow rate and low manufacturing costs. The valve actuation is provided by the thermal expansion of a liquid (actuation fluid) which, at the same time, actuates the valve and provides feed-back sensing. A maximum flow rate of 38 kg h-1 passes through the valve for a heat load up to 500 W. The valve is able to reduce the pumping power by up to 60% and it has the capability to maintain the IC at a more uniform temperature. © 2011 IOP Publishing Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonlinear analysis of thermoacoustic instability is essential for prediction of frequencies and amplitudes of limit cycles. In frequency domain analyses, a quasi-linear transfer function between acoustic velocity and heat release rate perturbations, called the flame describing function (FDF), is obtained from a flame model or experiments. The FDF is a function of the frequency and amplitude of velocity perturbations but only contains the heat release response at the forcing frequency. While the gain and phase of the FDF provide insight into the nonlinear dynamics of the system, the accuracy of its predictions remains to be verified for different types of nonlinearity. In time domain analyses, the governing equations of the fully coupled problem are solved to find the time evolution of the system. One method is to discretize the governing equations using a suitable basis, such as the natural acoustic modes of the system. The number of modes used in the discretization alters the accuracy of the solution. In our previous work we have shown that predictions using the FDF are almost exactly the same as those obtained from the time-domain using only one mode for the discretization. We call this the single-mode method. In this paper we compare results from the single-mode and multi-mode methods, applied to a thermoacoustic system of a premixed flame in a tube. For some cases, the results differ greatly in both amplitude as well as frequency content. This study shows that the contribution from higher and subharmonics to the nonlinear dynamics can be significant and must be considered for an accurate and comprehensive analysis of thermoacoustic systems. Hence multi-mode simulations are necessary, and the single-mode method or the FDF may be insufficient to capture some of the complex nonlinear behaviour in fhermoacoustics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The utilisation of computational fluid dynamics (CFD) in process safety has increased significantly in recent years. The modelling of accidental explosion via CFD has in many cases replaced the classical Multi Energy and Brake Strehlow methods. The benefits obtained with CFD modelling can be diminished if proper modelling of the initial phase of explosion is neglected. In the early stages of an explosion, the flame propagates in a quasi-laminar regime. Proper modelling of the initial laminar phase is a key aspect in order to predict the peak pressure and the time to peak pressure. The present work suggests a modelling approach for the initial laminar phase in explosion scenarios. Findings are compared with experimental data for two classical explosion test cases which resemble the common features in chemical process areas (confinement and congestion). A detailed analysis of the threshold for the transition from laminar to turbulent regime is also carried out. The modelling is implemented in a fully 3D Navier-Stokes compressible formulation. Combustion is treated using a laminar flamelet approach based on the Bray, Moss and Libby (BML) formulation. A novel modified porosity approach developed for the unstructured solver is also considered. Results agree satisfactorily with experiments and the modelling is found to be robust. © 2013 The Institution of Chemical Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a novel phase separation phenomenon observed in the growth of ternary In(x)Ga(1-x)As nanowires by metalorganic chemical vapor deposition. A spontaneous formation of core-shell nanowires is investigated by cross-sectional transmission electron microscopy, revealing the compositional complexity within the ternary nanowires. It has been found that for In(x)Ga(1-x)As nanowires high precursor flow rates generate ternary In(x)Ga(1-x)As cores with In-rich shells, while low precursor flow rates produce binary GaAs cores with ternary In(x)Ga(1-x)As shells. First-principle calculations combined with thermodynamic considerations suggest that this phenomenon is due to competitive alloying of different group-III elements with Au catalysts, and variations in elemental concentrations of group-III materials in the catalyst under different precursor flow rates. This study shows that precursor flow rates are critical factors for manipulating Au catalysts to produce nanowires of desired composition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An increasin g interest in biofuel applications in modern engines requires a better understanding of biodiesel combustion behaviour. Many numerical studies have been carried out on unsteady combustion of biodiesel in situations similar to diesel engines, but very few studies have been done on the steady combustion of biodiesel in situations similar to a gas turbine combustor environment. The study of biodiesel spray combustion in gas turbine applications is of special interest due to the possible use of biodiesel in the power generation and aviation industries. In modelling spray combustion, an accurate representation of the physical properties of the fuel is a first important step, since spray formation is largely influenced by fuel properties such as viscosity, density, surface tension and vapour pressure. In the present work, a calculated biodiesel properties database based on the measured composition of Fatty Acid Methyl Esters (FAME) has been implemented in a multi-dimensional Computational Fluid Dynamics (CFD) spray simulation code. Simulations of non-reacting and reacting atmospheric-pressure sprays of both diesel and biodiesel have been carried out using a spray burner configuration for which experimental data is available. A pre-defined droplet size probability density function (pdf) has been implemented together with droplet dynamics based on phase Doppler anemometry (PDA) measurements in the near-nozzle region. The gas phase boundary condition for the reacting spray cases is similar to that of the experiment which employs a plain air-blast atomiser and a straight-vane axial swirler for flame stabilisation. A reaction mechanism for heptane has been used to represent the chemistry for both diesel and biodiesel. Simulated flame heights, spray characteristics and gas phase velocities have been found to compare well with the experimental results. In the reacting spray cases, biodiesel shows a smaller mean droplet size compared to that of diesel at a constant fuel mass flow rate. A lack of sensitivity towards different fuel properties has been observed based on the non-reacting spray simulations, which indicates a need for improved models of secondary breakup. By comparing the results of the non-reacting and reacting spray simulations, an improvement in the complexity of the physical modelling is achieved which is necessary in the understanding of the complex physical processes involved in spray combustion simulation. Copyright © 2012 SAE International.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract A theoretical model is developed for the sound scattered when a sound wave is incident on a cambered aerofoil at non-zero angle of attack. The model is based on the linearization of the Euler equations about a steady subsonic flow, and is an adaptation of previous work which considered incident vortical disturbances. Only high-frequency sound waves are considered. The aerofoil thickness, camber and angle of attack are restricted such that the steady flow past the aerofoil is a small perturbation to a uniform flow. The singular perturbation analysis identifies asymptotic regions around the aerofoil; local 'inner' regions, which scale on the incident wavelength, at the leading and trailing edges of the aerofoil; Fresnel regions emanating from the leading and trailing edges of the aerofoil due to the coalescence of singularities and points of stationary phase; a wake transition region downstream of the aerofoil leading and trailing edge; and an outer region far from the aerofoil and wake. An acoustic boundary layer on the aerofoil surface and within the transition region accounts for the effects of curvature. The final result is a uniformly-valid solution for the far-field sound; the effects of angle of attack, camber and thickness are investigated. © 2013 Cambridge University Press.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple mathematical model of stack ventilation flows in multi-compartment buildings is developed with a view to providing an intuitive understanding of the physical processes governing the movement of air and heat through naturally ventilated buildings. Rules of thumb for preliminary design can be ascertained from a qualitative examination of the governing equations of flow, which elucidate the relationships between 'core' variables - flow rates, air temperatures, heat inputs and building geometry. The model is applied to an example three-storey office building with an inlet plenum and atrium. An examination of the governing equations of flow is used to predict the behaviour of steady flows and to provide a number of preliminary design suggestions. It is shown that control of ventilation flows must be shared between all ventilation openings within the building in order to minimise the disparity in flow rates between storeys, and ensure adequate fresh air supply rates for all occupants. © 2013 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The determination of lacunar-canalicular permeability is essential to understand the mechano-transduction mechanism of bone. Murine models are widely used to investigate skeletal growth and regulation, but the value of lacunar-canalicular permeability is still unclear. To address this question, a poroelastic analysis based on nanoindentation data was used to calculate the lacunar-canalicular permeability of wild type C57BL/6 mice of 12 months. Cross-sections of three tibiae were indented using spherical fluid cell indenter tips of two sizes. Results suggest that the value of lacunar-canalicular intrinsic permeability of B6 female murine tibia is in the order of 10 -24 m2. The distribution of the values of intrinsic permeability suggests that with larger contact sizes, nanoindentation alone is capable of capturing the multi-scale permeability of bone. Multi-scale permeability of bone measured by nanoindentation will lead to a better understanding of the role of fluid flow in mechano-transduction. © 2013 American Society of Civil Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using a simplified mathematical model, a preliminary design strategy for steady stack ventilation in multi-storey atrium buildings is developed. By non-dimensionalising the governing equations of flow, two key dimensionless parameters are identified - a ventilation performance indicator, λ, and atrium enhancement parameter, E - which quantify the performance of the ventilation system and the effectiveness of the atrium in assisting flows. Analytical expressions are determined to inform the vent sizes needed to provide the desired balance between indoor air temperature, ventilation flow rate and heat inputs for any distribution of occupants within the building, and also to ensure unidirectional flow. Dimensionless charts for determining the required combination of design variables are presented with a view to informing first-order design guidance for naturally ventilated buildings. © 2013 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A multi-functional 1 × 9 wavelength selective switch based on liquid crystal on silicon (LCOS) spatial light modulator technology and anamorphic optics was tested at a channel spacing of 100 and 200 GHz, including dynamic data measurements on both single beam deflection and multi-casting to two ports. The multi-casting holograms were optimized using a modified Gerchberg-Saxton routine to design the core hologram, followed by a simulated annealing routine to reduce crosstalk at non-switched ports. The effect of clamping the magnitude of phase changes between neighboring pixels during optimization was investigated, with experimental results for multi-casting to two ports resulting in a signal insertion loss of-7.6 dB normalized to single port deflection, a uniformity of ±0.6%, and a worst case crosstalk of-19.4 dB, which can all be improved further by using a better anti-reflection coating on the LCOS SLM coverplate and other measures. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple, rapid and sensitive on-line method for simultaneous determination of four endocrine disruptors (17 beta-estradiol, estriol, bisphenol A and 17 alpha-ethinylestradiol) in environmental waters was developed by coupling in-tube solid-phase microextraction (SPME) to high-performance liquid chromatography (HPLC) with fluorescence detection (FLD). A poly(acrylamide-vinylpyridine-NAP-methylene bisacrylamide) monolith, synthesized inside a polyether ether ketone (PEEK) tube, was selected as the extraction medium. To achieve optimum extraction performance, several parameters were investigated, including extraction flow-rate, extraction time, and pH value, inorganic salt and organic solvent content of the sample matrix. By simply filtered with nylon membrane filter and adjusting the pH of samples to 6.0 with phosphoric acid, the sample solution then could be directly injected into the device for extraction. Low detection limits (S/N = 3) and quantification limits (S/N = 10) of the proposed method were achieved in the range of 0.006-0.10 ng/mL and 0.02-0.35 ng/mL from spiked lake waters, respectively. The calibration curves of four endocrine disruptors showed good linearity ranging from quantification limits to 50 ng/mL with a linear coefficient R-2 value above 0.9913. Good method reproducibility was also found by intra- and inter-day precisions, yielding the RSDs less than 12 and 9.8%, respectively. Finally, the proposed method was successfully applied to the determination of these compounds in several environmental waters. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The signals of dolphins and porpoises often exhibit a multi-pulse structure. Here, echolocation signal recordings were made from four geometrically distinct positions of seven Yangtze finless porpoises temporarily housed in a relatively small, enclosed area. Some clicks demonstrated double-pulse, and others multi-pulse, structure. The interpulse intervals between the first and second pulse of the double- and multi-pulse clicks were significantly different among data from the four different positions (p < 0.01, one-way ANOVA). These results indicate that the interpulse interval and structure of the double- and multi-pulse echolocation signals depend on the hydrophone geometry of the animal, and that the double- and multi-pulse structure of echolocation signals in Yangtze finless porpoise is not caused by the phonating porpoise itself, but by the multipath propagation of the signal. Time delays in the 180 degrees phase-shifted surface reflection pulse and the nonphase-shifted bottom reflection pulse of the multi-pulse structures, relative to the direct signal, can be used to calculate the distance to a phonating animal. (c) 2005 Acoustical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For more dexterous and agile legged robot locomotion, alternative actuation has been one of the most long-awaited technologies. The goal of this paper is to investigate the use of newly developed actuator, the so-called Linear Multi-Modal Actuator (LMMA), in the context of legged robot locomotion, and analyze the behavioral performance of it. The LMMA consists of three discrete couplings which enable the system to switch between different mechanical dynamics such as instantaneous switches between series elastic and fully actuated dynamics. To test this actuator for legged locomotion, this paper introduces a one-legged robot platform we developed to implement the actuator, and explains a novel control strategy for hopping, i.e. 'preloaded hopping control'. This control strategy takes advantage of the coupling mechanism of the LMMA to preload the series elasticity during the flight phase to improve the energy efficiency of hopping locomotion. This paper shows a series of experimental results that compare the control strategy with a simple sinusoidal actuation strategy to discuss the benefits and challenges of the proposed approach. © 2013 IEEE.