852 resultados para Multi-Objective Optimization
Resumo:
Les réseaux optiques à commutation de rafales (OBS) sont des candidats pour jouer un rôle important dans le cadre des réseaux optiques de nouvelle génération. Dans cette thèse, nous nous intéressons au routage adaptatif et au provisionnement de la qualité de service dans ce type de réseaux. Dans une première partie de la thèse, nous nous intéressons à la capacité du routage multi-chemins et du routage alternatif (par déflection) à améliorer les performances des réseaux OBS, pro-activement pour le premier et ré-activement pour le second. Dans ce contexte, nous proposons une approche basée sur l’apprentissage par renforcement où des agents placés dans tous les nœuds du réseau coopèrent pour apprendre, continuellement, les chemins du routage et les chemins alternatifs optimaux selon l’état actuel du réseau. Les résultats numériques montrent que cette approche améliore les performances des réseaux OBS comparativement aux solutions proposées dans la littérature. Dans la deuxième partie de cette thèse, nous nous intéressons au provisionnement absolu de la qualité de service où les performances pire-cas des classes de trafic de priorité élevée sont garanties quantitativement. Plus spécifiquement, notre objectif est de garantir la transmission sans pertes des rafales de priorité élevée à l’intérieur du réseau OBS tout en préservant le multiplexage statistique et l’utilisation efficace des ressources qui caractérisent les réseaux OBS. Aussi, nous considérons l’amélioration des performances du trafic best effort. Ainsi, nous proposons deux approches : une approche basée sur les nœuds et une approche basée sur les chemins. Dans l’approche basée sur les nœuds, un ensemble de longueurs d’onde est assigné à chaque nœud du bord du réseau OBS pour qu’il puisse envoyer son trafic garanti. Cette assignation prend en considération les distances physiques entre les nœuds du bord. En outre, nous proposons un algorithme de sélection des longueurs d’onde pour améliorer les performances des rafales best effort. Dans l’approche basée sur les chemins, le provisionnement absolu de la qualité de service est fourni au niveau des chemins entre les nœuds du bord du réseau OBS. À cette fin, nous proposons une approche de routage et d’assignation des longueurs d’onde qui a pour but la réduction du nombre requis de longueurs d’onde pour établir des chemins sans contentions. Néanmoins, si cet objectif ne peut pas être atteint à cause du nombre limité de longueurs d’onde, nous proposons de synchroniser les chemins en conflit sans le besoin pour des équipements additionnels. Là aussi, nous proposons un algorithme de sélection des longueurs d’onde pour les rafales best effort. Les résultats numériques montrent que l’approche basée sur les nœuds et l’approche basée sur les chemins fournissent le provisionnement absolu de la qualité de service pour le trafic garanti et améliorent les performances du trafic best effort. En outre, quand le nombre de longueurs d’ondes est suffisant, l’approche basée sur les chemins peut accommoder plus de trafic garanti et améliorer les performances du trafic best effort par rapport à l’approche basée sur les nœuds.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Le Problème de Tournées de Véhicules (PTV) est une clé importante pour gérér efficacement des systèmes logistiques, ce qui peut entraîner une amélioration du niveau de satisfaction de la clientèle. Ceci est fait en servant plus de clients dans un temps plus court. En terme général, il implique la planification des tournées d'une flotte de véhicules de capacité donnée basée à un ou plusieurs dépôts. Le but est de livrer ou collecter une certain quantité de marchandises à un ensemble des clients géographiquement dispersés, tout en respectant les contraintes de capacité des véhicules. Le PTV, comme classe de problèmes d'optimisation discrète et de grande complexité, a été étudié par de nombreux au cours des dernières décennies. Étant donné son importance pratique, des chercheurs dans les domaines de l'informatique, de la recherche opérationnelle et du génie industrielle ont mis au point des algorithmes très efficaces, de nature exacte ou heuristique, pour faire face aux différents types du PTV. Toutefois, les approches proposées pour le PTV ont souvent été accusées d'être trop concentrées sur des versions simplistes des problèmes de tournées de véhicules rencontrés dans des applications réelles. Par conséquent, les chercheurs sont récemment tournés vers des variantes du PTV qui auparavant étaient considérées trop difficiles à résoudre. Ces variantes incluent les attributs et les contraintes complexes observés dans les cas réels et fournissent des solutions qui sont exécutables dans la pratique. Ces extensions du PTV s'appellent Problème de Tournées de Véhicules Multi-Attributs (PTVMA). Le but principal de cette thèse est d'étudier les différents aspects pratiques de trois types de problèmes de tournées de véhicules multi-attributs qui seront modélisés dans celle-ci. En plus, puisque pour le PTV, comme pour la plupart des problèmes NP-complets, il est difficile de résoudre des instances de grande taille de façon optimale et dans un temps d'exécution raisonnable, nous nous tournons vers des méthodes approcheés à base d’heuristiques.
Resumo:
Thèse réalisée en cotutelle avec l'Université Pierre et Marie Curie, Paris 6(UPMC, Paris, France).
Resumo:
Thèse réalisée en cotutelle entre l'Université de Montréal et l'Université de Technologie de Troyes
Resumo:
L’examen de la rétine par des moyens non invasifs et in vivo a été un objectif de recherche pendant plusieurs années. Pour l’œil comme pour tous les organes du corps humain, un apport soutenu en oxygène est nécessaire pour le maintien de l’homéostasie. La concentration en oxygène du sang des vaisseaux rétiniens peut être déterminée principalement à partir des mesures du spectre de réflexion du fond de l’œil. En envoyant une lumière, à différentes longueurs d’onde, sur la rétine et en analysant la nature de la lumière réfléchie par la rétine, il est possible d’obtenir des informations quantitatives sur le niveau d'oxygène dans les vaisseaux sanguins de la rétine ou sur le flux sanguin. Cependant, la modélisation est compliquée due aux différentes interactions et aux chemins que la lumière prend à travers les tissus oculaires avant de quitter l’œil. L’objectif de cette thèse a été de développer et de valider un modèle mathématique afin de calculer les dérivées d’hémoglobine à partir de mesures spectrales de réflectométrie sur les vaisseaux sanguins de la rétine. L’instrument utilisé pour mesurer la fonction spectrale de réflectométrie a été un spectroréflectomètre multi-canal, une technologie capable de mesurer in vivo et en continu 800 spectres simultanément. L'équation mathématique qui décrit la fonction spectrale de réflectométrie dans la zone spectrale de 480 nm à 650 nm a été exprimée comme la combinaison linéaire de plusieurs termes représentant les signatures spectrales de l'hémoglobine SHb, de l'oxyhémoglobine SOHB, l’absorption et la diffusion des milieux oculaires et une famille de fonctions multigaussiennes utilisées pour compenser l’incompatibilité du modèle et les données expérimentales dans la zone rouge du spectre. Les résultats du modèle révèlent que le signal spectral obtenu à partir de mesures de réflectométrie dans l’œil est complexe, contenant la lumière absorbée, réfléchie et diffusée, mais chacun avec une certaine prédominance spécifique en fonction de la zone spectrale. La fonction spectrale d’absorption du sang est dominante dans la zone spectrale 520 à 580 nm, tandis que dans la zone spectrale de longueurs d’ondes plus grandes que 590 nm, la diffusion sur les cellules rouges du sang est dominante. Le modèle a été utilisé afin de mesurer la concentration d’oxygène dans les capillaires de la tête du nerf optique suite à un effort physique dynamique. L’effort physique a entraîné une réduction de la concentration d’oxygène dans les capillaires, ainsi qu’une réduction de la pression intraoculaire, tandis que la saturation sanguine en oxygène, mesurée au niveau du doigt, restait constante. Le modèle mathématique développé dans ce projet a ainsi permis, avec la technique novatrice de spectroréflectométrie multicanal, de déterminer in vivo et d’une manière non invasive l’oxygénation sanguine des vaisseaux rétiniens.
Resumo:
De nombreux problèmes pratiques qui se posent dans dans le domaine de la logistique, peuvent être modélisés comme des problèmes de tournées de véhicules. De façon générale, cette famille de problèmes implique la conception de routes, débutant et se terminant à un dépôt, qui sont utilisées pour distribuer des biens à un nombre de clients géographiquement dispersé dans un contexte où les coûts associés aux routes sont minimisés. Selon le type de problème, un ou plusieurs dépôts peuvent-être présents. Les problèmes de tournées de véhicules sont parmi les problèmes combinatoires les plus difficiles à résoudre. Dans cette thèse, nous étudions un problème d’optimisation combinatoire, appartenant aux classes des problèmes de tournées de véhicules, qui est liée au contexte des réseaux de transport. Nous introduisons un nouveau problème qui est principalement inspiré des activités de collecte de lait des fermes de production, et de la redistribution du produit collecté aux usines de transformation, pour la province de Québec. Deux variantes de ce problème sont considérées. La première, vise la conception d’un plan tactique de routage pour le problème de la collecte-redistribution de lait sur un horizon donné, en supposant que le niveau de la production au cours de l’horizon est fixé. La deuxième variante, vise à fournir un plan plus précis en tenant compte de la variation potentielle de niveau de production pouvant survenir au cours de l’horizon considéré. Dans la première partie de cette thèse, nous décrivons un algorithme exact pour la première variante du problème qui se caractérise par la présence de fenêtres de temps, plusieurs dépôts, et une flotte hétérogène de véhicules, et dont l’objectif est de minimiser le coût de routage. À cette fin, le problème est modélisé comme un problème multi-attributs de tournées de véhicules. L’algorithme exact est basé sur la génération de colonnes impliquant un algorithme de plus court chemin élémentaire avec contraintes de ressources. Dans la deuxième partie, nous concevons un algorithme exact pour résoudre la deuxième variante du problème. À cette fin, le problème est modélisé comme un problème de tournées de véhicules multi-périodes prenant en compte explicitement les variations potentielles du niveau de production sur un horizon donné. De nouvelles stratégies sont proposées pour résoudre le problème de plus court chemin élémentaire avec contraintes de ressources, impliquant dans ce cas une structure particulière étant donné la caractéristique multi-périodes du problème général. Pour résoudre des instances de taille réaliste dans des temps de calcul raisonnables, une approche de résolution de nature heuristique est requise. La troisième partie propose un algorithme de recherche adaptative à grands voisinages où de nombreuses nouvelles stratégies d’exploration et d’exploitation sont proposées pour améliorer la performances de l’algorithme proposé en termes de la qualité de la solution obtenue et du temps de calcul nécessaire.
Resumo:
L’apprentissage supervisé de réseaux hiérarchiques à grande échelle connaît présentement un succès fulgurant. Malgré cette effervescence, l’apprentissage non-supervisé représente toujours, selon plusieurs chercheurs, un élément clé de l’Intelligence Artificielle, où les agents doivent apprendre à partir d’un nombre potentiellement limité de données. Cette thèse s’inscrit dans cette pensée et aborde divers sujets de recherche liés au problème d’estimation de densité par l’entremise des machines de Boltzmann (BM), modèles graphiques probabilistes au coeur de l’apprentissage profond. Nos contributions touchent les domaines de l’échantillonnage, l’estimation de fonctions de partition, l’optimisation ainsi que l’apprentissage de représentations invariantes. Cette thèse débute par l’exposition d’un nouvel algorithme d'échantillonnage adaptatif, qui ajuste (de fa ̧con automatique) la température des chaînes de Markov sous simulation, afin de maintenir une vitesse de convergence élevée tout au long de l’apprentissage. Lorsqu’utilisé dans le contexte de l’apprentissage par maximum de vraisemblance stochastique (SML), notre algorithme engendre une robustesse accrue face à la sélection du taux d’apprentissage, ainsi qu’une meilleure vitesse de convergence. Nos résultats sont présent ́es dans le domaine des BMs, mais la méthode est générale et applicable à l’apprentissage de tout modèle probabiliste exploitant l’échantillonnage par chaînes de Markov. Tandis que le gradient du maximum de vraisemblance peut-être approximé par échantillonnage, l’évaluation de la log-vraisemblance nécessite un estimé de la fonction de partition. Contrairement aux approches traditionnelles qui considèrent un modèle donné comme une boîte noire, nous proposons plutôt d’exploiter la dynamique de l’apprentissage en estimant les changements successifs de log-partition encourus à chaque mise à jour des paramètres. Le problème d’estimation est reformulé comme un problème d’inférence similaire au filtre de Kalman, mais sur un graphe bi-dimensionnel, où les dimensions correspondent aux axes du temps et au paramètre de température. Sur le thème de l’optimisation, nous présentons également un algorithme permettant d’appliquer, de manière efficace, le gradient naturel à des machines de Boltzmann comportant des milliers d’unités. Jusqu’à présent, son adoption était limitée par son haut coût computationel ainsi que sa demande en mémoire. Notre algorithme, Metric-Free Natural Gradient (MFNG), permet d’éviter le calcul explicite de la matrice d’information de Fisher (et son inverse) en exploitant un solveur linéaire combiné à un produit matrice-vecteur efficace. L’algorithme est prometteur: en terme du nombre d’évaluations de fonctions, MFNG converge plus rapidement que SML. Son implémentation demeure malheureusement inefficace en temps de calcul. Ces travaux explorent également les mécanismes sous-jacents à l’apprentissage de représentations invariantes. À cette fin, nous utilisons la famille de machines de Boltzmann restreintes “spike & slab” (ssRBM), que nous modifions afin de pouvoir modéliser des distributions binaires et parcimonieuses. Les variables latentes binaires de la ssRBM peuvent être rendues invariantes à un sous-espace vectoriel, en associant à chacune d’elles, un vecteur de variables latentes continues (dénommées “slabs”). Ceci se traduit par une invariance accrue au niveau de la représentation et un meilleur taux de classification lorsque peu de données étiquetées sont disponibles. Nous terminons cette thèse sur un sujet ambitieux: l’apprentissage de représentations pouvant séparer les facteurs de variations présents dans le signal d’entrée. Nous proposons une solution à base de ssRBM bilinéaire (avec deux groupes de facteurs latents) et formulons le problème comme l’un de “pooling” dans des sous-espaces vectoriels complémentaires.
Resumo:
Située dans le discours actuel à la mode sur la diversité culturelle, l’objet de cette thèse consiste à comprendre l’orientation pratique d’une organisation internationale en matière de gestion de sa diversité culturelle interne. Il propose que, face aux changements qui ont modifié la configuration sociodémographique de la sphère organisationnelle, il serait intéressant de partir d’une organisation pour laquelle la diversité est une tradition tributaire de son fonctionnement. L’organisation sujet d’étude est internationale, affiliée à l’Unesco. Cette dernière étant reconnue pour son mandat qui valorise et protège les cultures. L’ancrage épistémologique de la thèse est bi-disciplinaire. Il considère deux champs théoriques sur lesquels se construit la diversité culturelle. Le premier est forgé dans les théories de management dites « occidentales » sur la diversité. Le deuxième champ, s’établit sur une approche dynamique de la culture apportée par les « Cross-Cultural Studies ». La méthodologie que nous avons mobilisée pour cette recherche est principalement qualitative. Elle est également diverse puisqu’elle veut identifier trois niveaux d’analyses. D’abord, l’étude historique réalisée se fonde sur l’analyse d’articles choisis tirés des archives de l’« organisation mère » (Unesco). Elle se veut être une étude exhaustive qui révèle l’évolution du discours « global » de cette organisation sur la diversité culturelle depuis sa création. Ensuite, afin de mieux comprendre le discours interne de l’Organisation sur la diversité culturelle, une analyse du contenu d’un « halo » de ses politiques internes a lieu. Elle nous permet de comprendre la valeur que prend la diversité culturelle dans son discours « organisationnel » dans la période de temps que nous traitons. Enfin, les histoires « individuelles » des acteurs de la diversité culturelle, apportent une description riche et, complètent l’analyse avec leurs interprétions des pratiques de gestions mises en place à leur égard. Des éléments de recherche sous adjacentes sont aussi amenés dans la thèse et font également partie du processus de l’analyse de la pratique de la diversité culturelle dans l’Organisation. En effet, la thèse se penche sur le problème conceptuel sur la « diversité culturelle ». Elle apporte des éclaircissements à la terminologie à travers l’analyse de ses différents emplois dans la littérature organisationnelle. Par ailleurs, elle clarifie la notion d’organisation internationale et propose une description du contexte unesquien défini par sa diversité culturelle interne. L’ensemble des niveaux examinés a permis de mettre en évidence une double constatation. D’une part, le paradoxe entre les trois niveaux. D’autre part, la neutralité des pratiques de gestion de la diversité culturelle pour les employés et la demande implicite de reconnaissance de leurs identités culturelles. Des recommandations sont proposées et des suggestions pour de recherches ultérieures sont formulées à la conclusion de la thèse.
Resumo:
En tant que population majoritairement immigrante, les protestants inhumés au cimetière Saint-Matthew, ville de Québec (1771-1860) ont dû s'adapter à un nouvel environnement à leur arrivée au Québec, et donc à de nouvelles ressources. Parallèlement, les 18e et 19e siècles sont marqués par un contexte socio-économique en pleine mutation avec l'arrivée graduelle de la période industrielle, et la ville de Québec, avec son contexte portuaire, a ainsi été au coeur de ces changements. L'objectif de ce mémoire est d'évaluer si la géochimie des isotopes stables appliquée à plusieurs matériaux du squelette humain (collagène et apatite de l'os, collagène de la dentine, et carbonate de l'émail) permet de mieux comprendre comment les comportements alimentaires des individus analysés provenant de ce cimetière cosmopolite (n=40) ont évolué en cours de vie. L'alimentation étant influencée par des conditions socio-économiques, culturelles et environnementales, cela peut nous informer indirectement sur les processus d'adaptation et l'identité d'un individu. C'est dans cette perspective d'écologie culturelle que nous avons interprété les données recueillies lors de ce projet, en complément aux analyses effectuées précédemment par Morland (2009) et Caron (2013). Nos résultats corroborent les tendances déjà observées, soit des pratiques alimentaires semblables à celles que l'on retrouve en Europe, et des immigrants provenant majoritairement des Îles Britanniques. Ils démontrent également une légère augmentation de la consommation de ressources C4, comme le maïs et la canne à sucre, à l'âge adulte pour 90% des individus analysés, de même qu'une baisse du niveau de protéines. Par ailleurs, les individus étudiés ont généralement eu tendance à conserver le même niveau alimentaire les uns par rapport aux autres tout au cours de leur vie, même si les pratiques étaient moins diversifiés à l'âge adulte. Finalement, on constate des similarités de comportements avec les populations irlandaises et britanniques plus pauvres durant l'enfance, alors qu'ils ressemblent davantage à ceux visibles dans la vallée laurentienne en fin de vie, notamment en ce qui concerne l'apport en protéines. Nos résultats suggèrent donc des changements alimentaires significatifs, fort possiblement liés aux processus de migration et à une adaptation constante à un nouvel environnement de la part des individus étudiés.
Resumo:
To ensure quality of machined products at minimum machining costs and maximum machining effectiveness, it is very important to select optimum parameters when metal cutting machine tools are employed. Traditionally, the experience of the operator plays a major role in the selection of optimum metal cutting conditions. However, attaining optimum values each time by even a skilled operator is difficult. The non-linear nature of the machining process has compelled engineers to search for more effective methods to attain optimization. The design objective preceding most engineering design activities is simply to minimize the cost of production or to maximize the production efficiency. The main aim of research work reported here is to build robust optimization algorithms by exploiting ideas that nature has to offer from its backyard and using it to solve real world optimization problems in manufacturing processes.In this thesis, after conducting an exhaustive literature review, several optimization techniques used in various manufacturing processes have been identified. The selection of optimal cutting parameters, like depth of cut, feed and speed is a very important issue for every machining process. Experiments have been designed using Taguchi technique and dry turning of SS420 has been performed on Kirlosker turn master 35 lathe. Analysis using S/N and ANOVA were performed to find the optimum level and percentage of contribution of each parameter. By using S/N analysis the optimum machining parameters from the experimentation is obtained.Optimization algorithms begin with one or more design solutions supplied by the user and then iteratively check new design solutions, relative search spaces in order to achieve the true optimum solution. A mathematical model has been developed using response surface analysis for surface roughness and the model was validated using published results from literature.Methodologies in optimization such as Simulated annealing (SA), Particle Swarm Optimization (PSO), Conventional Genetic Algorithm (CGA) and Improved Genetic Algorithm (IGA) are applied to optimize machining parameters while dry turning of SS420 material. All the above algorithms were tested for their efficiency, robustness and accuracy and observe how they often outperform conventional optimization method applied to difficult real world problems. The SA, PSO, CGA and IGA codes were developed using MATLAB. For each evolutionary algorithmic method, optimum cutting conditions are provided to achieve better surface finish.The computational results using SA clearly demonstrated that the proposed solution procedure is quite capable in solving such complicated problems effectively and efficiently. Particle Swarm Optimization (PSO) is a relatively recent heuristic search method whose mechanics are inspired by the swarming or collaborative behavior of biological populations. From the results it has been observed that PSO provides better results and also more computationally efficient.Based on the results obtained using CGA and IGA for the optimization of machining process, the proposed IGA provides better results than the conventional GA. The improved genetic algorithm incorporating a stochastic crossover technique and an artificial initial population scheme is developed to provide a faster search mechanism. Finally, a comparison among these algorithms were made for the specific example of dry turning of SS 420 material and arriving at optimum machining parameters of feed, cutting speed, depth of cut and tool nose radius for minimum surface roughness as the criterion. To summarize, the research work fills in conspicuous gaps between research prototypes and industry requirements, by simulating evolutionary procedures seen in nature that optimize its own systems.
Resumo:
One major component of power system operation is generation scheduling. The objective of the work is to develop efficient control strategies to the power scheduling problems through Reinforcement Learning approaches. The three important active power scheduling problems are Unit Commitment, Economic Dispatch and Automatic Generation Control. Numerical solution methods proposed for solution of power scheduling are insufficient in handling large and complex systems. Soft Computing methods like Simulated Annealing, Evolutionary Programming etc., are efficient in handling complex cost functions, but find limitation in handling stochastic data existing in a practical system. Also the learning steps are to be repeated for each load demand which increases the computation time.Reinforcement Learning (RL) is a method of learning through interactions with environment. The main advantage of this approach is it does not require a precise mathematical formulation. It can learn either by interacting with the environment or interacting with a simulation model. Several optimization and control problems have been solved through Reinforcement Learning approach. The application of Reinforcement Learning in the field of Power system has been a few. The objective is to introduce and extend Reinforcement Learning approaches for the active power scheduling problems in an implementable manner. The main objectives can be enumerated as:(i) Evolve Reinforcement Learning based solutions to the Unit Commitment Problem.(ii) Find suitable solution strategies through Reinforcement Learning approach for Economic Dispatch. (iii) Extend the Reinforcement Learning solution to Automatic Generation Control with a different perspective. (iv) Check the suitability of the scheduling solutions to one of the existing power systems.First part of the thesis is concerned with the Reinforcement Learning approach to Unit Commitment problem. Unit Commitment Problem is formulated as a multi stage decision process. Q learning solution is developed to obtain the optimwn commitment schedule. Method of state aggregation is used to formulate an efficient solution considering the minimwn up time I down time constraints. The performance of the algorithms are evaluated for different systems and compared with other stochastic methods like Genetic Algorithm.Second stage of the work is concerned with solving Economic Dispatch problem. A simple and straight forward decision making strategy is first proposed in the Learning Automata algorithm. Then to solve the scheduling task of systems with large number of generating units, the problem is formulated as a multi stage decision making task. The solution obtained is extended in order to incorporate the transmission losses in the system. To make the Reinforcement Learning solution more efficient and to handle continuous state space, a fimction approximation strategy is proposed. The performance of the developed algorithms are tested for several standard test cases. Proposed method is compared with other recent methods like Partition Approach Algorithm, Simulated Annealing etc.As the final step of implementing the active power control loops in power system, Automatic Generation Control is also taken into consideration.Reinforcement Learning has already been applied to solve Automatic Generation Control loop. The RL solution is extended to take up the approach of common frequency for all the interconnected areas, more similar to practical systems. Performance of the RL controller is also compared with that of the conventional integral controller.In order to prove the suitability of the proposed methods to practical systems, second plant ofNeyveli Thennal Power Station (NTPS IT) is taken for case study. The perfonnance of the Reinforcement Learning solution is found to be better than the other existing methods, which provide the promising step towards RL based control schemes for practical power industry.Reinforcement Learning is applied to solve the scheduling problems in the power industry and found to give satisfactory perfonnance. Proposed solution provides a scope for getting more profit as the economic schedule is obtained instantaneously. Since Reinforcement Learning method can take the stochastic cost data obtained time to time from a plant, it gives an implementable method. As a further step, with suitable methods to interface with on line data, economic scheduling can be achieved instantaneously in a generation control center. Also power scheduling of systems with different sources such as hydro, thermal etc. can be looked into and Reinforcement Learning solutions can be achieved.
Resumo:
The objective of the study was to evaluate the survival response of multi-drug resistant enteropathogenic Escherichia coli and Salmonella paratyphi to the salinity fluctuations induced by a saltwater barrier constructed in Vembanadu lake, which separates the lake into a freshwater dominated southern and brackish water dominated northern part. Therefore, microcosms containing freshwater, brackish water and microcosms with different saline concentrations (5, 10, 15, 20, 25 ppt) inoculated with E. coli/S. paratyphi were monitored up to 34 days at 20 and 30 WC. E. coli and S. paratyphi exhibited significantly higher (p <0.05) survival at 20 WC compared to 30 WC in all microcosms. Despite fresh/brackish water, E. coli and S. paratyphi showed prolonged survival up to 34 days at both temperatures. They also demonstrated better survival potential at all tested saline concentrations except 25 ppt where a significantly higher (p<0.0001) decay was observed. Therefore, enhanced survival exhibited by the multi-drug resistant enteropathogenic E. coli and S. paratyphi over a wide range of salinity levels suggest that they are able to remain viable for a very long time at higher densities in all seasons of the year in Vembanadu lake irrespective of saline concentrations, and may pose potential public health risks during recreational activities
Resumo:
Coded OFDM is a transmission technique that is used in many practical communication systems. In a coded OFDM system, source data are coded, interleaved and multiplexed for transmission over many frequency sub-channels. In a conventional coded OFDM system, the transmission power of each subcarrier is the same regardless of the channel condition. However, some subcarrier can suffer deep fading with multi-paths and the power allocated to the faded subcarrier is likely to be wasted. In this paper, we compute the FER and BER bounds of a coded OFDM system given as convex functions for a given channel coder, inter-leaver and channel response. The power optimization is shown to be a convex optimization problem that can be solved numerically with great efficiency. With the proposed power optimization scheme, near-optimum power allocation for a given coded OFDM system and channel response to minimize FER or BER under a constant transmission power constraint is obtained
Resumo:
Over-sampling sigma-delta analogue-to-digital converters (ADCs) are one of the key building blocks of state of the art wireless transceivers. In the sigma-delta modulator design the scaling coefficients determine the overall signal-to-noise ratio. Therefore, selecting the optimum value of the coefficient is very important. To this end, this paper addresses the design of a fourthorder multi-bit sigma-delta modulator for Wireless Local Area Networks (WLAN) receiver with feed-forward path and the optimum coefficients are selected using genetic algorithm (GA)- based search method. In particular, the proposed converter makes use of low-distortion swing suppression SDM architecture which is highly suitable for low oversampling ratios to attain high linearity over a wide bandwidth. The focus of this paper is the identification of the best coefficients suitable for the proposed topology as well as the optimization of a set of system parameters in order to achieve the desired signal-to-noise ratio. GA-based search engine is a stochastic search method which can find the optimum solution within the given constraints.